Алюминиево марганцевые сплавы применение

Содержание:

Среди неупрочняемых алюминиевых сплавов наибольшее значение приобрели сплавы на основе Al-Mn и Al-Mg.

Марганец и магний, так же как и медь, имеют ограниченную растворимость в алюминии, уменьшающуюся при снижении температуры. Однако эффект упрочнения при их термообработке невелик. Объясняется это следующим образом. В процессе кристаллизации при изготовлении сплавов, содержащих до 1,9% Mn, выделяющийся из твердого раствора избыточный марганец должен был бы образовать с алюминием растворимое в нем химическое соединение Al (MnFe), которое в алюминии не растворяется. Следовательно, последующий нагрев выше линии предельной растворимости не обеспечивает образование гомогенного твердого раствора, сплав остается гетерогенным, состоящим из твердого раствора и частиц Al (MnFe), а это приводит к невозможности закалки и последущего старения.

В случае системы Al-Mg причина отсутствия упрочнения при термической обработке иная. При содержании магния до 1,4% упрочнения быть не может, так как в этих пределах он растворяется в алюминии при комнатной температуре и никакого выделения избыточных фаз не происходит. При большем же содержании магния закалка с последующим химическим старением приводит к выделению избыточной фазы — химического соединения Mg Al .

Однако свойства этого соединения таковы, что процессы, предшествующие его выделению, а затем и образующиеся включения не вызывают заметногоэффекта упрочнения. Несмотря на это, введение и марганца, и магния в алюминий полезно. Они повышают его прочность и коррозионную стойкость (при содержании магния не более 3%). Кроме того, сплавы с магнием более легкие, чем чистый алюминий.

Также для улучшения некоторых характеристик алюминия в качестве легирующих элементов используются:

Бериллий добавляется для уменьшения окисления при повышенных температурах. Небольшие добавки бериллия (0,01-0,05%) применяют в алюминиевых литейных сплавах для улучшения текучести в производстве деталей двигателей внутреннего сгорания (поршней и головок цилиндров).

Бор вводят для повышения электропроводимости и как рафинирующую добавку. Бор вводится в алюминиевые сплавы, используемые в атомной энергетике(кроме деталей реакторов), т.к. он поглощает нейтроны, препятствуя распространению радиации. Бор вводится в среднем в количестве 0,095-0,1%.

Висмут. Металлы с низкой температурой плавления, такие как висмут, свинец, олово, кадмий вводят в алюминиевые сплавы для улучшения обрабатываемости резанием. Эти элементы образуют мягкие легкоплавкие фазы, которые способствуют ломкости стружки и смазыванию резца.

Галлий добавляется в количестве 0,01 — 0,1% в сплавы, из которых далее изготавливаются расходуемые аноды.

Железо. В малых количествах (>0,04%) вводится при производстве проводов для увеличения прочности и улучшает характеристики ползучести. Так же железо уменьшает прилипание к стенкам форм при литье в кокиль.

Индий. Добавка 0,05 — 0,2% упрочняют сплавы алюминия при старении, особенно при низком содержании меди. Индиевые добавки используются в алюминиево — кадмиевых подшипниковых сплавах.

Кадмий. Примерно 0,3% кадмия вводят для повышения прочности и улучшения коррозионных свойств сплавов.

Кальций придает пластичность. При содержании кальция 5% сплав обладает эффектом сверхпластичности.

Кремний является наиболее используемой добавкой в литейных сплавах. В количестве 0,5-4% уменьшает склонность к трещинообразованию. Сочетание кремния с магнием делают возможным термоуплотнение сплава.

Олово улучшает обработку резанием.

Титан. Основная задача титана в сплавах — измельчение зерна в отливках и слитках, что очень повышает прочность и равномерность свойств во всем объеме.

Алюми́ниевые спла́вы — сплавы, основной массовой частью которых является алюминий. Самыми распространенными легирующими элементами в составе алюминиевых сплавов являются: медь, магний, марганец, кремний и цинк. Реже — цирконий, литий, бериллий, титан. В основном алюминиевые сплавы можно разделить на две основные группы: литейные сплавы и деформируемые (конструкционные). В свою очередь, конструкционные сплавы подразделяются на термически обработанные и термически необработанные. Большая часть производимых сплавов относится к деформируемым, которые предназначены для последующей ковки и штамповки [1] .

Читайте также:  Все модели шуруповертов макита

Содержание

Классификация [ править | править код ]

Приведена согласно национальным стандартам США (стандарт H35.1 ANSI) и ГОСТ России. В России основные стандарты это ГОСТ 1583 «Сплавы алюминиевые литейные. Технические условия» и ГОСТ 4784 «Алюминий и сплавы алюминиевые деформируемые. Марки». Существует также UNS [en] маркировка и международный стандарт алюминиевых сплавов и их маркировки ISO R209 b.

Алюминиево-магниевые сплавы [ править | править код ]

  • Алюминиево-магниевые Al-Mg (ANSI: серия 5ххх у деформируемых сплавов и 5xx.x у сплавов для изделий фасонного литья; ГОСТ: АМг).

Сплавы системы Al-Mg характеризуются сочетанием удовлетворительной прочности, хорошей пластичности, очень хорошей свариваемости и коррозионной стойкости [2] . Кроме того, эти сплавы отличаются высокой усталостной прочностью.

В сплавах этой системы, содержащих до 6 % Mg, образуется эвтектическая система с атомным составом Al3Mg2 c твердым раствором магния в алюминии. Наиболее широкое распространение в промышленности получили сплавы с содержанием магния от 1 до 5 %.

Рост содержания магния в сплаве существенно увеличивает его прочность. Увеличение концентрации магния на каждый процент содержания повышает предел прочности сплава на

30 МПа [3] , а предел текучести — на

20 МПа. При этом относительное удлинение уменьшается незначительно и находится в пределах 30—35 %.

Сплавы с содержанием магния до 3 % (по массе) не изменяют кристаллическую структуру при комнатной и повышенной температуре, даже в существенно нагартованном состоянии. С ростом концентрации магния в сплаве, в нагартованном состоянии механическая структура сплава становится нестабильной. Кроме того, увеличение содержания магния свыше 6 % приводит к ухудшению коррозионной стойкости сплава.

Для улучшения прочностных характеристик сплавы системы Al—Mg легируют хромом, марганцем, титаном, кремнием или ванадием. Примеси в сплавы этой системы меди и железа нежелательны, поскольку они снижают их коррозионную стойкость и свариваемость.

Алюминиево-марганцевые сплавы [ править | править код ]

  • Алюминиево-марганцевые Al—Mn (ANSI: серия 3ххх; ГОСТ: АМц).

Сплавы этой системы обладают хорошей прочностью, пластичностью и технологичностью, высокой коррозионной стойкостью и хорошей свариваемостью.

Основными примесями в сплавах системы Al—Mn являются железо и кремний. Оба этих элемента уменьшают растворимость марганца в алюминии. Для получения мелкозернистой структуры сплавы этой системы легируют титаном.

Легирование достаточным [ каким? ] количеством марганца обеспечивает стабильность структуры нагартованного металла при комнатной и повышенной температурах.

Алюминиево-медные сплавы [ править | править код ]

  • Алюминиево-медные Al—Cu (Al—Cu—Mg) (ANSI: серия 2ххх, 2xx.x; ГОСТ: АМ).

Механические свойства сплавов этой системы в термоупрочнённом состоянии достигают, а иногда и превышают, механические свойства низкоуглеродистых сталей. Эти сплавы хорошо поддаются механической обработке. Их существенный недостаток — низкая коррозионная стойкость, поэтому необходимо использовать поверхностные защитные покрытия.

В качестве легирующих добавок используются марганец, кремний, железо и магний. Причем наиболее сильное влияние на свойства сплава оказывает магний: легирование магнием заметно повышает предел прочности и текучести. Добавка кремния в сплав повышает его способность к искусственному старению. Легирование железом и никелем повышает жаропрочность сплавов.

Нагартовка этих сплавов после закалки ускоряет искусственное старение, а также повышает прочность и сопротивление коррозии под напряжением.

Сплавы алюминий-медь-кремний [ править | править код ]

  • Сплавы системы Al—Cu—Si (ГОСТ: АМК).

Алюминиевые антифрикционные сплавы, называемые также алькусинами (также: аэрон). Применяется во втулочных подшипниках [4] , а также при изготовлении блоков цилиндров с формообразованием в т.ч. литьём [5] . Имеют высокую твёрдость поверхности, поэтому плохо прирабатываются.

Сплавы алюминий-цинк-магний [ править | править код ]

  • Сплавы системы Al—Zn—Mg (Al—Zn—Mg—Cu) (ANSI: серия 7ххх, 7xx.x).

Сплавы этой системы имеют достаточно высокую прочность и хорошую обрабатываемость. Типичные сплавы этой системы — сплавы В95 (в США сплав 7075) относятся к высокопрочным алюминиевым сплавам. Эффект высокого упрочнения обусловлен высокой растворимостью цинка (до 70 %) и магния (до 17,4 %) при температуре плавления сплава, но растворимость резко уменьшается при охлаждении.

Существенным недостатком этих сплавов является крайне низкая коррозионная стойкость под воздействием механического напряжения. Повышение коррозионной стойкости сплавов под напряжением достигается легированием медью.

В 1960-е годы была обнаружена закономерность: легирование литием алюминиевых сплавов замедляет естественное и ускоряет искусственное старение. Помимо этого, присутствие лития уменьшает плотность сплава и существенно повышает его модуль упругости [ источник не указан 1189 дней ] . На основе этого открытия [ какого? ] были разработаны новые системы сплавов Al—Mg—Li, Al—Cu—Li и Al—Mg—Cu—Li.

Читайте также:  Из чего можно сделать ресивер для компрессора

Алюминий-кремниевые сплавы (силумины) [ править | править код ]

  • Алюминиево-кремниевые сплавы (силумины) — группа литейных сплавов. Имеют малую усадку при кристаллизации расплава. Применяются для отливок корпусов разных механизмов, корпусов приборов, деталей бытовых приборов, декоративного литья.

Другие сплавы [ править | править код ]

  • Комплексные сплавы на основе алюминия: авиаль.

Новые композитные сплавы алюминия [ править | править код ]

В 2019 году российские учёные из Национального исследовательского технологического университета МИСиС создали новый уникально прочный композит алюминий-никель-лантан. В расплав алюминия добавлялись легирующие элементы, образующие с алюминием химические соединения, которые в процессе затвердевания сплава дают прочный армирующий каркас. Наилучшие результаты по прочности в сочетании с лёгкостью и гибкостью показали Al-La-Ni справы с содержанием La до 8% масс и содержанием Ni до 5% масс [6] . Согласно микроисследованиям, сплав состоит из первичных кристаллов Al и сверхтонкой тройной эвтектики (толщина частиц около 30–70 нм), состоящей из из бинарных соединений Al3Ni и Al4La. Испытание на одноосное растяжение перспективного сплава Al7La4Ni в литом состоянии показало предел прочности при растяжении около 250±10 МПа, предел текучести 200±10 МПа и пластичность 3,0±0,2% [6] . Благодаря естественной кристаллизации, частицы распределяются равномерно, создавая армирующий каркас, и композит получается более прочным и гибким, чем его «порошковые» аналоги. Новый сплав очень перспективен для использования в области авиа- и автомобилестроения, для проектирования современной робототехники, в том числе беспилотных летательных аппаратов, где снижение массы дрона имеет критическое значение. Показатели сплава превышают другие алюмоматричные композиты. [7]

Маркировка по ГОСТ [ править | править код ]

Принята буквенно-цифровая система маркировки. Буква, стоящая в начале, означает:
А — технический алюминий;
Д — дюралюминий;
АК — алюминиевый сплав, ковкий;
АВ — авиаль;
В — высокопрочный алюминиевый сплав;
АЛ — литейный алюминиевый сплав;
АМг — алюминиево-магниевый сплав;
АМц — алюминиево-марганцевый сплав;
САП — спечённые алюминиевые порошки;
САС — спечённые алюминиевые сплавы.

Вслед за буквами идёт номер марки сплава. За номером марки сплава ставится буква, обозначающая состояние сплава:
М — сплав после отжига (мягкий);
Т — после закалки и естественного старения;
А — плакированный (нанесён чистый слой алюминия);
Н — нагартованный;
П — полунагартованный.

Термическая обработка [ править | править код ]

Применяют: отжиг, закалку, старение.

Отжиг существует 3-х типов:

  • диффузионный (гомогенизация);
  • рекристаллизационный;
  • отжиг термически упрочняемых сплавов.

Гомогенизация выравнивает химическую микронеоднородность зёрен путём диффузии (уменьшение дендритной ликвации).

Рекристаллизационный отжиг восстанавливает пластичность после обработки давлением.

Отжиг термически упрочняемых сплавов полностью снимает упрочнение.

Химический состав [ править | править код ]

В соответствии с ГОСТ [8] соотношение кремния и железа в алюминиевых сплавах должно быть менее единицы.

Алюминиевые сплавы
Марка Массовая доля элементов, % Плотность, кг/дм³
ГОСТ ISO
209-1-89
Кремний (Si) Железо (Fe) Медь (Cu) Марганец (Mn) Магний (Mg) Хром (Cr) Цинк (Zn) Титан (Ti) Другие Алюминий
не менее
Каждый Сумма
АД000 A199,8
1080A
0,15 0,15 0,03 0,02 0,02 0,06 0,02 0,02 99,8 2,7
АД00
1010
A199,7
1070A
0,2 0,25 0,03 0,03 0,03 0,07 0,03 0,03 99,7 2,7
АД00Е
1010Е
ЕА199,7
1370
0,1 0,25 0,02 0,01 0,02 0,01 0,04 Бор:0,02
Ванадий+титан:0,02
0,1 99,7 2,7

Интересные факты [ править | править код ]

С 1997 по 2017 годы Министерство энергетики РФ запрещало использование алюминиевых сплавов в электропроводке зданий и сооружений.

Многочисленные изделия из металла состоят из алюминия. Из него производят трубы, посуду, электрические провода, а также элементы построек.

Сплавы алюминия используются для создания транспортных средств. Один кг Al заменяет 300 кг от массы стали, не утяжеляет механику, позволяя развивать большие скорости. Производимый объем мировых масштабов за 2016 год достиг около 3500000 тонн, не учитывая промышленность Китая (+12 %).

Характеристика алюминия

Данный металл добывают путем технической обработки бокситовой руды. Залежи породы находятся на поверхности Земли и присутствуют во многих странах: Россия, Америка, Франция.

Алюминий серебристо-белого цвета, легкой массы, мягкий металл, тринадцатый по счету в таблице Менделеева. Температура плавления достигает до 700 градусов Цельсия (жаропрочный), плотность составляет 2,7 грамм на квадратный см. Хорошо проводит тепло и ток. Максимальный предел прочности 150 МПа, упругость 7000 Мпа. Активно взаимодействует с кислородом, подвержен коррозии, если поверхностная пленка оксида Al повреждена. В состав алюминия входят следующие металлы:

  • Mg (0,001мг-0,003мг);
  • Zn (0,001мг-0,005 мг);
  • Fe (0,0001 мг-0,0005 мг);
  • Si (0,001мг-0,005 мг);
  • Cu до (0,001мг-0,0005 мг);
Читайте также:  Как выглядит редукционный клапан

Природный состав алюминиевой руды может содержать дополнительные примеси алюмосиликатов. Новую технологию обработки магнетита, ученые придумали в 20 веке и используют в наше время.

Марка алюминия

Российская Федерация марки алюминия регламентирует ГОСТом №4784 от 1 июля 2000 года. Марочник распространяется на деформируемые алюминиевые сплавы, обрабатываемые методом горячей или холодной деформации.

Маркировки существуют трех видов:

  • Буквенно-цифровое обозначение:
  • Стандартный цифровой вид;
  • Международная маркировка.

Маркировка алюминия по ГОСТу расшифровывает первую цифру как основной металл, вторую как легирующую систему, третью и последнюю как модификацию марки.

Классификация алюминия

Сплавы на основе алюминия занимают второе место по объему производства после стали. Металлическая руда делится по классификациям состава:

  1. Первичная (А0, А8, А5Е, А85, А999, А6, А95, А7, А97);
  2. Техническая (Ад, АД0Е, АД1, АД00, АДС, АД00Е);
  3. Для раскисления (АВ86, АВ91ф, Ав86Ф, АВ92, АВ92Ф, АВ97, АВ91);
  4. Литейная (АК21М2.5Н2.5, АЛ23-1, АЛ32, АЛ4М, В2616 и т.д.);
  5. Деформируемый металл (1201, Маг4.5, АМцС, ВД17, Д18, 1420, АМг2 и т.д.);
  6. Антифрикционный металл (АМСТ, АН-2.5, А020-1, А03-1, А03-7, АСМ).

Промышленность часто применяет четвертый пятый пункты. Литейные сплотки отлично плавятся, хорошо текут. Эффективное применение структуры находят в формировании частей различных разновидностей конструкций. Обладают низким порогом образования газовых пустот, трещин.

Деформируемые алюминиевые составы имеют гомогенную твердую особенность. Это пластичный, менее жаростойкий металл. Основа компонента: магний, медь, цинк марганец, присутствуют остатки железа кремния и других металлов. По плотности сплавы делятся на:

  • Упрочняемые. Классификация «Д» (Д1, Д16, Д18 и т.д.) Плотность состава возможно повысить термической обработкой;
  • Не упрочняемые (дюралюминии). Марка «АМц» или «АМг». Увеличение прочности достигается методом пластической деформации.

Алюминиево-магниевые сплавы

Сплавы литейные, состав наполнен 6 % магнием, обладают высокой эффективностью к деформационному упрочнению. Магниевый сплав устойчив к коррозии и временной деформации. Однако высокое количество Mg образует в соединении тенденцию к образованию химической реакции между металлами. Происходит естественное соединение молекул. Интерметаллидная фаза ускоряет старение внутренней структуры. При комнатной температуре происходит выделение частиц, механический состав ухудшается. Различают два типа старения алюминиево-магниевых сплоток:

  • Искусственный технически обрабатывают при высокой температуре;
  • Естественный. Металл не обрабатывают, а оставляют при нормальной температуре.

Алюминиево-марганцевые сплавы

Алюминиево-марганцевые сплавы относится к термически не упрочняемым видам. Обладают низкой прочностью, но высокой коррозийной стойкостью, плотно свариваются. Недостатки возникают из-за кристаллизационных трещин, которые образуются из-за повышенного содержания железа или кремния плавильного состава. Обладают вязкостью пластичностью.

Сплавы алюминий-медь-кремний

Другое название алюминиево-литиевого соединения — это аэрон. Применяется в самолетостроении. Прочнее чем легированный дюралюминий. Свойства сплава схожи с латунью. Иногда в состав добавляют литиевый или натриевый компонент для повышения кремния электрического состава на 2%. Плотность лития составляет до 2,9 грамм на квадратный сантиметр. Обладает хорошей износоустойчивостью.

Сплавы алюминий-цинк-магний

Обладают высокой прочностью до 700 Мпа. Однако при физико-механическом состаривании на максимальную плотность сталь растрескивается. Имеет низкую пластичность. Для устранения недостатков соединения используют метод щадящего старения, который сохраняет высокую прочность, повышает устойчивость к коррозии. Сплав В95 важный в авиастроении входит в состав главных деталей самолетов.

Алюминий-кремниевые сплавы(силумины)

Литейный силумин менее прочный по внутренней структуре, чем другие категории литейных сплавов. Это связано с тем, что кремний не растворяется в алюминии. Мало пластичны по своим функциям, но имеют прекрасные плавильные свойства. Для улучшения тягучести, в состав добавляют натрий или другой металл (модифицированный силумин). Обладают повышенной текучестью. Применяют для отливки сложных форм.

Другие сплавы

К модифицированному металлу относится авиационный алюминий. В его состав входит магний и кремний, а также другие элементы (например, медь). Обладает прочностью и достаточной стойкостью к старению. Имеет маркировку «АВ». Используется в изготовлении кованых деталей сложных форм.

Помимо этого, существуют магнитные сплотки ални, состав которых состоит из никеля, а также железа. Более твердые, но хрупкие и применяются для литья форм.

Рекомендуем также к прочтению:

Отправить ответ

  Подписаться  
Уведомление о
Adblock
detector