Что лучше проводит тепло металл или дерево

Ниже предствлена таблица теплопроводности металлов:

Металл Коэф. теплопроводности
Серебро 408
Медь 384
Золото 312
Алюминий 203
Латунь 100
Железо 92
Платина 70
Бронза 64
Чугун 62,8
Сталь 50
Свинец 34,9

В таблицах теплопроводности и электропроводности замечается закономерность: металлы которые лучше проводят тепло — лучше проводят и электрический ток. По таблице теплоемкости можно определить, какие вещества лучше накапливают тепловую энергию.

Теплопроводность значительно изменяется в зависимости от температуры металлов и наличия примесей в них. Показатель теплопроводности имеет большое значение в системах нагрева, охлаждения или сохранения тепла. В системах с динамическим изменением температур чаще используются металлы с большой теплопроводностью. Если требуется сохранить тепловую энергию внутри системы, то используются вещества с малой теплопроводностью.

ОПЫТЫ ПО ТЕПЛОПРОВОДНОСТИ

Разные твердые вещества по-разному проводят тепло. Лучше всего это делают металлы. Но и среди металлов есть чемпионы по теплопроводности. К ним относятся так называемые «благородные металлы» — платина, золото, серебро.

Опыт с железным гвоздем

В толстую чурку забей гвоздь и поставь ее на противень.
Снизу к этому длинному гвоздю прилепи пластилином, или воском несколько маленьких гвоздиков. Под шляпку гвоздя подставь горящую свечу.

Смотри: вот отвалился один гвоздик. другой… третий…
Строго по порядочку, по очереди.

Сначала самый близкий к огню, потом все дальше, дальше…
Значит, тепло передается по гвоздю от нагретого конца к холодному. И передается постепенно.


Опыт с деревом

Когда гвоздь остынет, выдерни его и в оставшееся отверстие вставь лучинку.
Повтори тот же опыт с ней.

Картина будет совсем другая!
Конец лучинки загорится, а гвоздики будут держаться по-прежнему. Выходит, что дерево проводит тепло гораздо хуже, чем железо.

Опыт со стеклом

Если есть у тебя подходящая по толщине стеклянная палочка или трубка, повтори опыт с ней.
Она, конечно, не горит, но тепло проводит не лучше дерева.


Опыт с ложками

Возьмите две чайные ложки: одну серебряную, другую из никелевого сплава. Прикрепите к ним каплями стеарина скрепки для бумаг. Вложите ложки в стакан, чтобы ручки со скрепками торчали из него в разные стороны. Налейте в стакан кипяток. Ложки нагреются. У серебряной ложки стеарин расплавится, и скрепка отпадет. У другой ложки скрепка или совсем не отпадет, или отпадет позже, когда ложка нагреется сильнее.

Конечно, ложки должны быть одинаковые по форме и размеру. Если нет серебряной ложки, возьмите такие, какие у вас есть, но только из разных металлов. Где нагревание произойдет быстрее, тот металл лучше проводит тепло, более теплопроводен.

Опыт с монетой

Различные вещества по-разному проводят тепло. Это хорошо видно из небольшого опыта.
Приложите к кусочку дерева монету и оберните их белой бумагой. Поднесите все это на короткое время к пламени свечи так, чтобы пламя только коснулось места, где над бумагой находится монета. Старайтесь не дать бумаге загореться. Но бумага все же успела обуглиться, и обуглилась она вокруг монеты.

Там же, где была сама монета, остался не тронутый огнем белый кружок. Металл монеты, как хороший теплопроводный материал, отобрал на себя жар пламени и предохранил бумагу от обгорания.


ТЕПЛОПРОВОДНОСТЬ ПОРИСТЫХ ТЕЛ

Из твердых веществ хуже всего проводит тепло керамика, пластмасса, дерево, ткань.

Вот поэтому ручки у чайников или сковородок делают из пластмассы или дерева. А если ручка металлическая, то, чтобы не обжечь пальцы, приходится пользоваться тряпкой. Она тоже плохо проводит тепло и, предохраняя руку от ожога, служит теплоизоляцией.

Опыт

Распушите небольшой комок ваты и оберните им шарик термометра.
Теперь подержите некоторое время термометр на определенном расстоянии от какого-нибудь нагревателя и заметьте, как поднялась температура. Затем тот же комок ваты сожмите и туго обмотайте им шарик термометра и снова поднесите к лампе. Во втором случае ртуть поднимется гораздо быстрее.
Значит, сжатая вата проводит тепло намного лучше!

Читайте также:  Что такое сталь 40х

Высокие теплоизоляционные свойства вате придает воздух, заключенный между волокнами распушенной ваты (а не сама вата). Шерсть теплее, чем вата, именно потому, что ее волокнистая структура позволяет задерживать в себе еще больше воздуха.

На этом же принципе основано производство теплоизоляционных материалов для домостроения. В них делают как можно больше воздушных промежутков.

ТЕПЛОПРОВОДНОСТЬ ГАЗА

Зимой вы применяете теплоизоляцию и надеваете теплое пальто или шубу. Воздух, который содержится между волокнами ваты или меха, как и всякий газ, плохой проводник тепла.

Итак, для того чтобы предохранить что-либо от холода, применяется теплоизоляция. Но и от излишнего тепла приходится принимать теплоизоляционные меры. Когда космический корабль на спуске с огромной скоростью летит в атмосфере Земли, его стенки трутся о воздух и сильно нагреваются. Для сохранения внутри корабля от высокой температуры экипажа и аппаратуры применяют теплоизоляционный, теплостойкий чехол. Он состоит из слоев плохо проводящих теплоту материалов.

Опыт 1

Уже говорилось о том, что газы плохо проводят тепло.
Возьмите алюминиевую тарелочку от детской посуды, поставьте ее на небольшой огонь и, когда она достаточно нагреется, налейте на нее половину чайной ложки воды.

Вода не испарится мгновенно, как следовало бы ожидать. Вода перекатится плоским шариком — сфероидом на самое низкое место тарелочки и замрет там на раскаленном металле. Кажется странным, что вода не превращается сразу в пар. Конечно, вода испаряется, но этот самый пар, в который превращается вода, и предохраняет большую сфероидальную каплю от раскаленного металла. Пар в данном случае оказывается отличной теплоизоляцией.


Опыт 2

Когда вы гладите белье, переверните утюг и, если он достаточно нагрет, брызните на него водой. Она сразу превратится в маленькие круглые шарики, которые быстро покатятся по утюгу.

Эти мелкие шарообразные капельки тоже не испарились мгновенно, их тоже защитила от жара утюга паровая прослойка, «паровая подушка». На этой «паровой подушке» водяные шарики и пропутешествовали по раскаленному утюгу.


Опыт 3

Возьмите несколько маленьких кусочков сухого льда, положите их на гладкую поверхность алюминиевой тарелки. Наклоняйте тарелку в разные стороны. Кусочки сухого льда будут легко скользить по гладкой поверхно­сти. Теплая поверхность алюминиевой тарелки (ее температура отличается от температуры сухого льда по крайней мере на 100 градусов) помогает углекислому газу более бурно выделяться. Под кусочками сухого льда получаются «углекислые подушки», на них и происходит скольжение.

Источник: "Здравствуй, физика", Л. Гальперштейн; Ф.Рабиза "Опыты без приборов" и "Космос у тебя дома"

Теплопроводность представляет собой физическую величину, которая определяет способность материалов проводить тепло. Иными словами, теплопроводность представляет собой способность субстанций передавать кинетическую энергию атомов и молекул другим субстанциям, находящиеся в непосредственном контакте с ними. В СИ эта величина измеряется во Вт/(К*м) (Ватт на Кельвин-метр), что эквивалентно Дж/(с*м*К) (Джоуль на секунду-Кельвин-метр).

Понятие теплопроводности

Она является интенсивной физической величиной, то есть величиной, которая описывает свойство материи, не зависящей от количества последней. Интенсивными величинами также являются температура, давление, электропроводность, то есть эти характеристики одинаковы в любой точке одного и того же вещества. Другой группой физических величин являются экстенсивные, которые определяются количеством вещества, например, масса, объем, энергия и другие.

Противоположной величиной для теплопроводности является теплосопротивляемость, которая отражает способность материала препятствовать переносу проходящего через него тепла. Для изотропного материала, то есть материала, свойства которого одинаковы во всех пространственных направлениях, теплопроводность является скалярной величиной и определяется, как отношение потока тепла через единичную площадь за единицу времени к градиенту температуры. Так, теплопроводность, равная одному ватту на метр-Кельвин, означает, что тепловая энергия в один Джоуль переносится через материал:

  • за одну секунду;
  • через площадь один метр квадратный;
  • на расстояние один метр;
  • когда разница температур на поверхностях, находящихся на расстоянии один метр друг от друга в материале, равна один Кельвин.

Понятно, что чем больше значение теплопроводности, тем лучше материал проводит тепло, и наоборот. Например, значение этой величины для меди равно 380 Вт/(м*К), и этот металл в 10 000 раз лучше переносит тепло, чем полиуретан, теплопроводность которого составляет 0,035 Вт/(м*К).

Читайте также:  Какие сплавы называют силуминами

Перенос тепла на молекулярном уровне

Когда материя нагревается, увеличивается средняя кинетическая энергия составляющих ее частиц, то есть увеличивается уровень беспорядка, атомы и молекулы начинают более интенсивно и с большей амплитудой колебаться около своих равновесных положений в материале. Перенос тепла, который на макроскопическом уровне можно описать законом Фурье, на молекулярном уровне представляет собой обмен кинетической энергией между частицами (атомами и молекулами) вещества, без переноса последнего.

Это объяснение механизма теплопроводности на молекулярном уровне отличает его от механизма термической конвекции, при котором имеет место перенос тепла за счет переноса вещества. Все твердые тела обладают способностью к теплопроводности, в то время как тепловая конвекция возможна только в жидкостях и газах. Действительно, твердые вещества переносят тепло в основном за счет теплопроводности, а жидкости и газы, если есть температурные градиенты в них, переносят тепло в основном за счет процессов конвекции.

Теплопроводность материалов

Ярко выраженной способностью проводить тепло обладают металлы. Для полимеров свойственна невысокая теплопроводность, а некоторые из них практически не проводят тепло, например, стекловолокно, такие материалы называются теплоизоляторами. Чтобы существовал тот или иной поток тепла через пространство, необходимо наличие некоторой субстанции в этом пространстве, поэтому в открытом космосе (пустое пространство) теплопроводность равна нулю.

Каждый гомогенный (однородный) материал характеризуется коэффициентом теплопроводности (обозначается греческой буквой лямбда), то есть величиной, которая определяет, сколько тепла нужно передать через площадь 1 м², чтобы за одну секунду, пройдя через толщу материала в один метр, температура на его концах изменилась на 1 К. Это свойство присуще каждому материалу и изменяется в зависимости от его температуры, поэтому этот коэффициент измеряют, как правило, при комнатной температуре (300 К) для сравнения характеристики разных веществ.

Если материал является неоднородным, например, железобетон, тогда вводят понятие полезного коэффициента теплопроводности, который измеряется согласно коэффициентам однородных веществ, составляющих этот материал.

В таблице ниже приведены коэффициенты теплопроводности некоторых металлов и сплавов во Вт/(м*К) для температуры 300 К (27 °C):

  • сталь 47—58;
  • алюминий 237;
  • медь 372,1—385,2;
  • бронза 116—186;
  • цинк 106—140;
  • титан 21,9;
  • олово 64,0;
  • свинец 35,0;
  • железо 80,2;
  • латунь 81—116;
  • золото 308,2;
  • серебро 406,1—418,7.

В следующей таблице приведены данные для неметаллических твердых веществ:

  • стекловолокно 0,03—0,07;
  • стекло 0,6—1,0;
  • асбест 0,04;
  • дерево 0,13;
  • парафин 0,21;
  • кирпич 0,80;
  • алмаз 2300.

Из рассматриваемых данных видно, что теплопроводность металлов намного превышает таковую для неметаллов. Исключение составляет алмаз, который обладает коэффициентом теплопередачи в пять раз больше, чем медь. Это свойство алмаза связано с сильными ковалентными связями между атомами углерода, которые образуют его кристаллическую решетку. Именно благодаря этому свойству человек чувствует холод при прикосновении к алмазу губами. Свойство алмаза хорошо переносить тепловую энергию используется в микроэлектронике для отвода тепла из микросхем. А также это свойство используется в специальных приборах, позволяющих отличить настоящий алмаз от подделки.

В некоторых индустриальных процессах стараются увеличить способность передачи тепла, чего достигают либо за счет хороших проводников, либо за счет увеличения площади контакта между составляющими конструкции. Примерами таких конструкций являются теплообменники и рассеиватели тепла. В других же случаях, наоборот, стараются уменьшить теплопроводность, чего достигают за счет использования теплоизоляторов, пустот в конструкциях и снижения площади контакта элементов.

Коэффициенты теплопередачи сталей

Способность передавать тепло для сталей зависит от двух главных факторов: состава и температуры.

Простые углеродные стали при увеличении содержания углерода снижают свой удельный вес, в соответствии с которым также уменьшается и их способность переносить тепло от 54 до 36 Вт/(м*К) при изменении процента углерода в стали от 0,5 до 1,5%.

Нержавеющие стали содержат в своем составе хром (10% и больше), которые вместе с углеродом образует сложные карбиды, препятствующие окислению материала, а также повышает электродный потенциал металла. Теплопроводность нержавейки невелика в сравнении с другими сталями и колеблется от 15 до 30 Вт/(м*К) в зависимости от ее состава. Жаропрочные хромоникелевые стали обладают еще более низкими значениями этого коэффициента (11—19 Вт/(м*К).

Читайте также:  Таблицы селективности schneider electric

Другим классом являются оцинкованные стали с удельным весом 7 850 кг/м3, которые получают путем нанесения покрытий на сталь, состоящих из железа и цинка. Так как цинк легче проводит тепло, чем железо, то и теплопроводность оцинкованной стали будет относительно высокой в сравнении с другими классами стали. Она колеблется от 47 до 58 Вт/(м*К).

Теплопроводность стали при различных температурах, как правило, не изменяется сильно. Например, коэффициент теплопроводности стали 20 при увеличении температуры от комнатной до 1200 °C снижается от 86 до 30 Вт/(м*К), а для марки стали 08Х13 увеличение температуры от 100 до 900 °C не изменяет ее коэффициент теплопроводности (27—28 Вт/(м*К).

Факторы, влияющие на физическую величину

Способность проводить тепло зависит от ряда факторов, включая температуру, структуру и электрические свойства вещества.

Температура материала

Влияние температуры на способность проводить тепло различается для металлов и неметаллов. В металлах проводимость главным образом связана со свободными электронами. Согласно закону Видемана—Франца теплопроводность металла пропорциональна произведению абсолютной температуры, выраженной в Кельвинах, на его электропроводность. В чистых металлах с увеличением температуры уменьшается электропроводность, поэтому теплопроводность остается приблизительно постоянной величиной. В случае сплавов электропроводность мало изменяется с ростом температуры, поэтому теплопроводность сплавов растет пропорционально температуре.

С другой стороны, передача тепла в неметаллах главным образом связана с колебаниями решетки и обмене решеточными фононами. За исключением кристаллов высокого качества и низких температур, путь пробега фононов в решетке значительно не уменьшается при высоких температурах, поэтому и теплопроводность остается постоянной величиной во всем температурном диапазоне, то есть является незначительной. При температурах ниже температуры Дебая способность неметаллов проводить тепло, наряду с их теплоемкостью, значительно уменьшается.

Фазовые переходы и структура

Когда материал испытывает фазовый переход первого рода, например, из твердого состояния в жидкое или из жидкого в газ, то его теплопроводность может измениться. Ярким примером такого изменения является разница этой физической величины для льда (2,18 Вт/(м*К) и воды (0,90 Вт/(м*К).

Изменения кристаллической структуры материалов также влияют на теплопроводность, что объясняется анизотропными свойствами различных аллотропных модификаций вещества одного и того же состава. Анизотропия влияет на различную интенсивность рассеивания решеточных фононов, основных переносчиков тепла в неметаллах, и в различных направлениях в кристалле. Здесь ярким примером является сапфир, проводимость которого изменяется от 32 до 35 Вт/(м*К) в зависимости от направления.

Электрическая проводимость

Теплопроводность в металлах изменяется вместе с электропроводностью согласно закону Видемана—Франца. Это связано с тем, что валентные электроны, свободно перемещаясь по кристаллической решетке металла, переносят не только электрическую, но и тепловую энергию. Для других материалов корреляция между этими типами проводимости не является ярко выраженной, ввиду незначительного вклада электронной составляющей в теплопроводность (в неметаллах основную роль в механизме передачи тепла играют решеточные фононы).

Процесс конвекции

Воздух и другие газы являются, как правило, хорошими теплоизоляторами при отсутствии процесса конвекции. На этом принципе основана работа многих теплоизолирующих материалов, содержащих большое количество небольших пустот и пор. Такая структура не позволяет конвекции распространяться на большие расстояния. Примерами таких материалов, полученных человеком, являются полистирен и силицидный аэрогель. В природе на том же принципе работают такие теплоизоляторы, как шкура животных и оперение птиц.

Легкие газы, например, водород и гель, имеют высокие значения теплопроводности, а тяжелые газы, например, аргон, ксенон и радон, являются плохими проводниками тепла. Например, аргон, инертный газ, который тяжелее воздуха, часто используется в качестве теплоизолирующего газового наполнителя в двойных окнах и в электрических лампочках. Исключением является гексафторид серы (элегаз), который является тяжелым газом и обладает относительно высокой теплопроводностью, ввиду его большой теплоемкости.

Отправить ответ

  Подписаться  
Уведомление о
Adblock
detector