Инвертор постоянного тока в переменный

Владельцы патента RU 2523698:

Изобретение относится к преобразователям электрической энергии, конкретно к автономным инверторам напряжения и может быть использовано во вторичных источниках питания в общепромышленной технике, а так же в преобразователях собственных нужд для локомотивов на железнодорожном транспорте. Техническим результатом изобретения является уменьшение массогабаритных размеров преобразователя. Указанный технический результат достигается тем, что преобразователь постоянного тока в переменный ток, содержащий источник постоянного напряжения с конденсатором на выходе, мостовой инвертор напряжения, состоящий из четырех ключей, каждый из которых состоит из транзистора и обратного диода, выводы постоянного тока которого соединены с выходом источника постоянного напряжения, а выводы переменного тока подключены к первичной обмотке трансформатора, вторичная обмотка которого подключена к нагрузке, систему управления, кроме этого в магнитопровод трансформатора встроен датчик Холла, выход которого подключен к входу системы управления, выходы которой подключены к входам первого и второго драйверов, каждый из которых управляет двумя последовательно включенными ключами мостового инвертора напряжения. 1ил.

Изобретение относится к преобразователям электрической энергии, конкретно к автономным инверторам напряжени, и может быть использовано во вторичных источниках питания в общепромышленной технике, а также в преобразователях собственных нужд для локомотивов на железнодорожном транспорте.

Известен статический преобразователь, содержащий полумостовой транзисторный инвертор, состоящий из конденсаторного делителя напряжения контактной сети и двух транзисторов, трансформатора, первый вывод первичной обмотки которого подключен к средней точке конденсаторного делителя напряжения, второй вывод — к эмиттеру первого и коллектору второго транзисторов, а вторичная обмотка подключена к нагрузке регулятора напряжения и ШИМ-контроллера, первый выход которого соединен с управляющими цепями первого транзистора, второй выход соединен с управляющими цепями второго транзистора, а вход — с выходом регулятора напряжения (RU, патент №2314939, B60L 9/04, B60L 01/00, 2008 г.).

Недостатком данного статического преобразователя является в два раза меньшая мощность на выходе при использовании одинаковых силовых транзисторов, обусловленная использованием в нем полумостовой схемы транзисторного инвертора.

Наиболее близким к заявляемому изобретению по совокупности существенных признаков является однофазный мостовой транзисторный инвертор, принятый за прототип, содержащий транзисторы, источник питания со сглаживающим конденсатором на выходе, нагрузку, преимущественно трансформаторного типа, подключенную через конденсатор к диагонали переменного тока упомянутого однофазного мостового транзисторного инвертора, а также содержащий датчик тока нагрузки, соединенный выходом с системой управления и защиты, датчик сквозных токов, выполненный в виде четырехобмоточного насыщающегося трансформатора, вторичная обмотка которого подключена к соответствующему входу системы управления и защиты (RU, патент №2168825, Н02Н 7/22, Н02М 7/5387, 2001 г.).

Недостатком прототипа являются большие массогабаритные размеры датчика сквозных токов и силового конденсатора в цепи первичной обмотки трансформатора, рассчитанных на полный ток обмотки трансформатора.

Техническим результатом изобретения является уменьшение массогабаритных размеров преобразователя.

Указанный технический результат достигается тем, что преобразователь постоянного тока в переменный ток, содержащий источник постоянного напряжения с конденсатором на выходе, мостовой инвертор напряжения, состоящий из четырех ключей, каждый из которых состоит из транзистора и обратного диода, выводы постоянного тока которого соединены с выходом источника постоянного напряжения, а выводы переменного тока подключены к первичной обмотке трансформатора, вторичная обмотка которого подключена к нагрузке, систему управления, кроме этого в магнитопровод трансформатора встроен датчик Холла, выход которого подключен к входу системы управления, выходы которой подключены к входам первого и второго драйверов, каждый из которых управляет двумя последовательно включенными ключами мостового инвертора напряжения.

На чертеже представлена структурная схема преобразователя постоянного тока в переменный ток.

Преобразователь постоянного тока в переменный ток, содержит источник постоянного напряжения 1 с конденсатором 2 на выходе, мостовой инвертор напряжения 3, состоящий из четырех ключей 4-7, каждый из которых состоит из транзистора 8 и обратного диода 9, выводы постоянного тока которого соединены с выходом источника постоянного напряжения 1, а выводы переменного тока подключены к первичной обмотке 10 трансформатора 11, вторичная обмотка 12 которого подключена к нагрузке 13, систему управления 14, датчик Холла 15, встроеный в магнитопровод трансформатора 11 и выход которого подключен к входу системы управления 14, выходы которой подключены к входам первого и второго драйверов 16, 17. Драйверы 16, 17 управляют соответственно последовательно включенными ключами 4,5 и 6,7 мостового инвертора напряжения 3.

Магнитопровод трансформатора 11 выполнен разрезным поперек направления линий магнитной индукции. На поверхности разреза выполнено углубление, в которое устанавливают датчик Холла 15. Датчик Холла 15 преобразует индукцию магнитного поля трансформатора 11 в напряжение, знак и величина которого зависит от полярности и силы магнитного поля.

Драйвера 16, 17 усиливают по мощности сигналы с системы управления 14, а также осуществляет гальваническую развязку между силовыми цепями мостового инвертора напряжения 3 и слаботочными цепями системы управления 14. Кроме этого, драйвера 16,17 осуществляют мониторинг падения напряжения на переходе коллектор-эмиттер транзисторов 8 ключей 4-7.

В качестве транзисторов 8 могут быть использованы IGBT-транзисторы или транзисторы структуры MOSFET. Обратные диоды 9 защищают транзисторы 8 в моменты выключения от обратных напряжений.

Преобразователь постоянного тока в переменный ток работает следующим образом.

Включают источник постоянного напряжения 1 с конденсатором 2, постоянное напряжение которого подается на выводы постоянного тока мостового инвертора напряжения 3, состоящего из четырех ключей 4-7, каждый из которых состоит из транзистора 8 и обратного диода 9. Выводы переменного тока мостового инвертора напряжения 3 подключают к первичной обмотке 10 трансформатора 11, в магнитопровод трансформатора 11 встроен датчик Холла 15, выход которого подключен к входу системы управления 14. Очередность включения ключей 4-7 осуществляют системой управления 14. Системой управления 14 формируют два противофазных сигнала управления и подают соответственно на входы драйверов 16,17. Каждым из драйверов 16,17 управляют двумя последовательно включенными ключами 4,5 и 6,7 мостового инвертора напряжения 3. При включении ключа 4(6), выключают ключ 5(7) и наоборот. Напряжение источника постоянного напряжения 1 преобразуют в переменное напряжение одновременным включением ключей 4,7 (6,5) и выключением ключей 6,5 (4,7). При этом ток через первичную обмотку 10 трансформатора 11 полпериода управляющего сигнала течет в одну сторону и полпериода в другую, перемагничивая магнитопровод трансформатора 11 по симметричной петле гистерезиса. Датчиком Холла 15 индукцию магнитного поля преобразуют в двухполярное импульсное напряжение, которое поступает в систему управления 14. Вследствие неидентичности характеристик транзисторов 8 ключей 4-7, в частности времен включения и выключения транзисторов 8, в переменном токе первичной обмотки 10 трансформатора 11 появляется постоянная составляющая тока, которая намагничивает магнитопровод трансформатора 11. При этом датчик Холла 15 формирует двухполярное импульсное напряжение со смещением в положительное или отрицательное значение. Системой управления 14 путем фильтрации выделяют постоянную составляющую выходного напряжения с датчика Холла 15 и в зависимости от знака постоянной составляющей увеличивают или уменьшают скважность импульсов управления. Процесс регулирования осуществляют до тех пор, пока постоянная составляющая выходного напряжения с датчика Холла 15 не станет равной нулю.

Читайте также:  Стол для распиловки досок

Драйверами 16, 17 не только включают ключи 4-7, но и осуществляют мониторинг состояния транзисторов 8. При сквозном токе через ключи 4,5 (6,7) падение напряжения на переходах коллектор-эмиттер транзисторов 8 превысит допустимое значение и драйвер 16 (17) блокирует импульсы управления с передачей сигнала аварии в систему управления 14.

Применение датчика Холла 15 и драйверов 16,17 позволяют исключить из конструции преобразователя постоянного тока в переменный ток крупногабаритные датчик сквозного тока и силовой конденсатор.

Предлагаемый преобразователь постоянного тока в переменный ток испытан и будет реализован в преобразователе собственных нужд опытного магистрального газотурбовоза ГТ1h — 002.

Преобразователь постоянного тока в переменный ток, содержащий источник постоянного напряжения с конденсатором на выходе, мостовой инвертор напряжения, состоящий из четырех ключей, каждый из которых состоит из транзистора и обратного диода, выводы постоянного тока которого соединены с выходом источника постоянного напряжения, а выводы переменного тока подключены к первичной обмотке трансформатора, вторичная обмотка которого подключена к нагрузке, систему управления, отличающийся тем, что в магнитопровод трансформатора встроен датчик Холла, выход которого подключен к входу системы управления, выходы которой подключены к входам первого и второго драйверов, каждый из которых управляет двумя последовательно включенными ключами мостового инвертора напряжения.

Инве́ртор — устройство для преобразования постоянного тока в переменный [1] с изменением величины напряжения. Обычно представляет собой генератор периодического напряжения, по форме приближённого к синусоиде, или дискретного сигнала.

Инверторы напряжения могут применяться в виде отдельного устройства или входить в состав источников и систем бесперебойного питания аппаратуры электрической энергией переменного тока.

Содержание

Свойства инверторов [ править | править код ]

  • Инверторы напряжения позволяют устранить или по крайней мере ослабить зависимость работы информационных систем от качества сетей переменного тока. Например, в персональных компьютерах при внезапном отказе сети с помощью резервной аккумуляторной батареи и инвертора, образующих источник бесперебойного питания (ИБП), можно обеспечить работу компьютеров для корректного завершения решаемых задач. В более сложных ответственных системах инверторные устройства могут работать в длительном контролируемом режиме параллельно с сетью или независимо от неё.
  • Кроме «самостоятельных» приложений, где инвертор выступает в качестве источника питания потребителей переменного тока, широкое развитие получили технологии преобразования энергии, где инвертор является промежуточным звеном в цепочке преобразователей. Принципиальной особенностью инверторов напряжения для таких приложений является высокая частота преобразования (десятки-сотни килогерц). Для эффективного преобразования энергии на высокой частоте требуется более совершенная элементная база (полупроводниковые ключи, магнитные материалы, специализированные контроллеры).
  • Как и любое другое силовое устройство, инвертор должен иметь высокий КПД, обладать высокой надежностью и иметь приемлемые массо-габаритные характеристики. Кроме того, он должен иметь допустимый уровень высших гармонических составляющих в кривой выходного напряжения (допустимое значение коэффициентов гармоник) и не создавать при работе недопустимый для других потребителей уровень пульсации на зажимах источника энергии.
  • В системах чистого измеренияGr > Работа инвертора [ править | править код ]

Работа инвертора напряжения основана на переключении источника постоянного напряжения с целью периодического изменения полярности напряжения на зажимах нагрузки. Частота переключения задается сигналами управления, формируемыми управляющей схемой (контроллером). Контроллер также может решать дополнительные задачи:

  • регулирование напряжения;
  • синхронизация частоты переключения ключей;
  • защитой их от перегрузок и др.

По принципу действия инверторы делятся на:

  • автономные;
  • инверторы напряжения (АИН), пример — инверторы большинства ИБП;
  • инверторы тока (АИТ), пример — советский аэродромный преобразователь АПЧС-63У1 [2] ;
  • резонансные инверторы (АИР);
  • зависимые (инверторы, ведомые сетью), пример — силовой преобразователь электровозов ВЛ85, ЭП1 и др.
  • Методы технической реализации инверторов и особенности их работы [ править | править код ]

    1. Ключи инвертора должны быть управляемыми (включаются и выключаются по сигналу управления), а также обладать свойством двухсторонней проводимости тока[3] . Как правило, такие ключи получают шунтированием транзисторов обратными диодами. Исключение составляют полевые транзисторы, в которых такой диод является внутренним элементом их полупроводниковой структуры.
    2. Регулирование выходного напряжения инверторов достигается изменением площади импульса полуволны. Наиболее простое регулирование достигается регулированием длительности (ширины) импульса полуволны. Такой способ является простейшим вариантом метода широтно-импульсной модуляции (ШИМ) сигналов.
    3. Нарушение симметрии полуволн выходного напряжения порождает побочные продукты преобразования с частотой ниже основной, включая возможность появления постоянной составляющей напряжения, недопустимой для цепей, содержащих трансформаторы.
    4. Для получения управляемых режимов работы инвертора, ключи инвертора и алгоритм управления ключами должны обеспечить последовательную смену структур силовой цепи, называемых прямой, коротко замкнутой и инверсной.
    5. Мгновенная мощность потребителя p ( t ) <displaystyle p(t)>пульсирует с удвоенной частотой. Первичный источник питания должен допускать работу с пульсирующими и даже изменяющими знак токами потребления. Переменные составляющие первичного тока определяют уровень помех на зажимах источника питания.

    Типовые схемы инверторов напряжения [ править | править код ]

    Существуют большое число вариантов построения схем инверторов. Исторически первыми были механические инверторы, которые в эпоху развития полупроводниковых технологий заменили более технологичные инверторы на базе полупроводниковых элементов, и цифровые инверторы напряжения. Но всё же, как правило, выделяют три основные схемы инверторов напряжения:

    • Мостовой ИН без трансформатора

    Область применения: устройства бесперебойного питания мощностью более 500 ВА, установки с высоким значением напряжения (220..360 В).

    • С нулевым выводом трансформатора

    Область применения: Устройства бесперебойного питания компьютеров мощностью (250.. 500 ВА), при низком значении напряжения (12..24 В), преобразователи напряжения для подвижных систем радиосвязи.

    • Мостовая схема с трансформатором
    Читайте также:  Инструменты для резьбы по дереву татьянка

    Область применения: Устройства бесперебойного питания ответственных потребителей с широким диапазоном мощностей: единицы — десятки кВА [4] .

    Принцип построения инверторов [ править | править код ]

    • Инверторы с прямоугольной формой выходного напряжения

    Преобразование постоянного напряжения первичного источника в переменное достигается с помощью группы ключей, периодически коммутируемых таким образом, чтобы получить знакопеременное напряжение на зажимах нагрузки и обеспечить контролируемый режим циркуляции в цепи реактивной энергии. В таких режимах гарантируется пропорциональность выходного напряжения. В зависимости от конструктивного исполнения модуля переключения (модуля силовых ключей инвертора) и алгоритма формирования управляющих воздействий, таким фактором могут быть относительная длительность импульсов управления ключами или фазовый сдвиг сигналов управления противофазных групп ключей. В случае неконтролируемых режимов циркуляции реактивной энергии реакция потребителя с реактивными составляющими нагрузки влияет на форму напряжения и его выходную величину [5][6] .

    • Инверторы напряжения со ступенчатой формой кривой выходного напряжения

    Принцип построения такого инвертора заключается в том, что при помощи предварительного высокочастотного преобразования формируются однополярные ступенчатые кривые напряжения, приближающиеся по форме к однополярной синусоидальной кривой с периодом, равным половине периода изменения выходного напряжения инвертора. Затем с помощью, как правило, мостового инвертора однополярные ступенчатые кривые напряжения преобразуются в разнополярную кривую выходного напряжения инвертора.

    • Инверторы с синусоидальной формой выходного напряжения

    Принцип построения такого инвертора заключается в том, что при помощи предварительного высокочастотного преобразования получают напряжение постоянного тока, значение которого близко к амплитудному значению синусоидального выходного напряжения инвертора. Затем это напряжение постоянного тока с помощью, как правило, мостового инвертора преобразуется в переменное напряжение по форме, близкое к синусоидальному, за счет применении соответствующих принципов управления транзисторами этого мостового инвертора (принципы так называемой «многократной широтно-импульсной модуляции»). [7][8] Идея этой «многократной» ШИМ заключается в том, что на интервале каждого полупериода выходного напряжения инвертора соответствующая пара транзисторов мостового инвертора коммутируется на высокой частоте (многократно) при широтно-импульсном управлении. Причём длительность этих высокочастотных импульсов коммутации изменяется по синусоидальному закону . Затем с помощью высокочастотного фильтра нижних частот выделяется синусоидальная составляющая выходного напряжения инвертора. [5] . При использовании однополярного источника постоянного напряжения (доступны уровни 0 и Ud, где Ud — напряжение постоянного тока, питающего инвертор) эффективное значение первой гармоники фазного напряжения U e f f ( 1 ) = 0.45 U d <displaystyle U_<
    m >^<(1)>=0.45U_<
    m >>При использовании двуполярного источника постоянного напряжения (доступны уровни 0, -Ud/2 и Ud/2) амплитудное значение первой гармоники фазного напряжения U m ( 1 ) = 0.5 U d <displaystyle U_<
    m >^<(1)>=0.5U_
    >соответственно, эффективное значение U e f f ( 1 ) = 0.35 U d <displaystyle U_<
    m
    >^<(1)>=0.35U_<
    m >>

    • Инверторы напряжения с самовозбуждением

    Инверторы с самовозбуждением (автогенераторы) относятся к числу простейших устройств преобразования энергии постоянного тока. Относительная простота технических решений при достаточно высокой энергетической эффективности привело к их широкому применению в маломощных источниках питания в системах промышленной автоматики и генерировании сигналов прямоугольной формы, особенно в тех приложениях, где отсутствует необходимость в управлении процессом передачи энергии. В этих инверторах используется положительная обратная связь, обеспечивающая их работу в режиме устойчивых автоколебаний, а переключение транзисторов осуществляется за счет насыщения материала магнитопровода трансформатора. [9][10] В связи со способом переключения транзисторов, с помощью насыщения материала магнитопровода трансформатора, выделяют недостаток схем инверторов, а именно низкий КПД, что объясняется большими потерями в транзисторах. Поэтому такие инверторы применяются при частотах f <displaystyle f>не более 10 кГц и выходной мощности до 10 Вт. При существенных перегрузках и коротких замыканиях в нагрузке в любом из инверторов с самовозбуждением происходит срыв автоколебаний (все транзисторы переходят в закрытое состояние).

    Однофазные инверторы [ править | править код ]

    Существуют несколько групп инверторов:

    • Первая группа более дорогих инверторов обеспечивает синусоидальное выходное напряжение.
    • Вторая группа обеспечивает выходное напряжение упрощённой формы, заменяющей синусоиду. Чаще всего используется сигнал в виде трапецеидального синуса

    Для подавляющего большинства бытовых приборов не допустимо использовать переменное напряжение с упрощённой формой сигнала. Синусоида важна для приборов, содержащих электродвигатели/трансформаторы и некоторых телекоммуникационных, измерительных, лабораторных приборов, медицинской аппаратуры, а также профессиональной аудио аппаратуры. Выбор инвертора производится исходя из пиковой мощности энергопотребления стандартного напряжения 220В/50Гц.

    Существуют три режима работы инвертора:

    • Режим длительной работы. Данный режим соответствует номинальной мощности инвертора.
    • Режим перегрузки. В данном режиме большинство моделей инверторов в течение нескольких десятков минут (до 30) могут отдавать мощность в 1,2-1,5 раза больше номинальной.
    • Режим пусковой. В данном режиме инвертор способен отдавать повышенную моментальную мощность в течение нескольких миллисекунд для обеспечения запуска электродвигателей и емкостных нагрузок.

    В течение нескольких секунд большинство моделей инверторов могут отдавать мощность в 1,5-2 раза превышающую номинальную. Сильная кратковременная перегрузка возникает, например, при включении холодильника.

    Инвертора мощностью 150 Вт достаточно, чтобы запитать от бортовой электросети автомобиля практически любой ноутбук. Для питания и зарядки мобильных телефонов, аудио и фотоаппаратуры хватит 7,5 Вт.

    Трёхфазные инверторы [ править | править код ]

    Трёхфазные инверторы обычно используются для создания трёхфазного тока для электродвигателей, например, для питания трёхфазного асинхронного двигателя. При этом обмотки двигателя непосредственно подключаются к выходу инвертора.

    На рисунке приведена схема тиристорного тягового преобразователя по схеме «Ларионов-звезда». Теоретически возможна и другая разновидность схемы Ларионова «Ларионов-треугольник», но она имеет другие характеристики (эквивалентное внутреннее активное сопротивление, потери в меди и др.).

    Самая простая и самая распространенная схема трехфазного инвертора напряжения, получается простым объединением по общему источнику входного напряжения трех полумостовых однофазных инверторов напряжения, при этом при соединении фаз трехфазной нагрузки в звезду без нуля или треугольником не требуется наличие средней точки у источника входного напряжения.

    Сигналы управления на верхний и нижний транзисторы каждого плеча моста поступают в течении полупериода выходного напряжения с соответствующими фазовыми сдвигами для получения трехфазной системы.

    Преобразователем напряжения называется устройство, которое изменяет вольтаж цепи. Это электронный прибор, который используется для изменения величины входного напряжения устройства. Преобразователи напряжения могут повышать или понижать входное напряжение, в том числе менять величину и частоту первоначального напряжения.

    Необходимость применения данного устройства преимущественно возникает в случаях, когда необходимо использовать какой-либо электрический прибор в местах, где невозможно использовать имеющиеся стандарты или возможности электроснабжения. Преобразователи могут использоваться в виде отдельного устройства либо входить в состав систем бесперебойного питания и источников электрической энергии. Они широко применяются во многих областях промышленности, в быту и других отраслях.

    Читайте также:  Бензопила партнер 370 технические характеристики

    Устройство

    Для преобразования одного уровня напряжения в иное часто используют импульсные преобразователи напряжения с применением индуктивных накопителей энергии. Согласно этому известно три типа схем преобразователей:
    • Инвертирующие.
    • Повышающие.
    • Понижающие.
    Общими для указанных видов преобразователей являются пять элементов:
    • Ключевой коммутирующий элемент.
    • Источник питания.
    • Индуктивный накопитель энергии (дроссель, катушка индуктивности).
    • Конденсатор фильтра, который включен параллельно сопротивлению нагрузки.
    • Блокировочный диод.

    Включение указанных пяти элементов в разных сочетаниях дает возможность создать любой из перечисленных типов импульсных преобразователей.

    Регулирование уровня выходящего напряжения преобразователя обеспечивается изменением ширины импульсов, которые управляют работой ключевого коммутирующего элемента. Стабилизация выходного напряжения создается методом обратной связи: изменение выходного напряжения создает автоматическое изменение ширины импульсов.

    Типичным представителем преобразователя напряжения также является трансформатор. Он преобразует переменное напряжение одного значения в переменное напряжение другого значения. Данное свойство трансформатора широко применяется в радиоэлектронике и электротехнике.

    Устройство трансформатора включает следующие элементы:
    • Магнитопровод.
    • Первичная и вторичная обмотка.
    • Каркас для обмоток.
    • Изоляция.
    • Система охлаждения.
    • Другие элементы (для доступа к выводам обмоток, монтажа, защиты трансформатора и так далее).

    Напряжение, которое будет выдавать трансформатор на вторичной обмотке, будет зависеть от витков, которые имеются на первичной и вторичной обмотке.

    Существуют и другие виды преобразователей напряжения, которые имеют иную конструкцию. Их устройство в большинстве случаев выполнено на полупроводниковых элементах, так как они обеспечивают значительный коэффициент полезного действия.

    Принцип действия

    Преобразователь напряжение вырабатывает напряжение питания необходимой величины из иного питающего напряжения, к примеру, для питания определенной аппаратуры от аккумулятора. Одним из главных требований, которые предъявляются к преобразователю, является обеспечение максимального коэффициента полезного действия.

    Преобразование переменного напряжения легко можно выполнить при помощи трансформатора, вследствие чего подобные преобразователи постоянного напряжения часто создаются на базе промежуточного преобразования постоянного напряжения в переменное.
    • Мощный генератор переменного напряжения, который питается от источника исходного постоянного напряжения, соединяется с первичной обмоткой трансформатора.
    • Переменное напряжение необходимой величины снимается с вторичной обмотки, которое потом выпрямляется.
    • В случае необходимости постоянное выходное напряжение выпрямителя стабилизируется при помощи стабилизатора, который включен на выходе выпрямителя, либо с помощью управления параметрами переменного напряжения, которое вырабатывается генератором.
    • Для получения высокого кпд в преобразователях напряжения используются генераторы, которые работают в ключевом режиме и вырабатывают напряжение с использованием логических схем.
    • Выходные транзисторы генератора, которые коммутируют напряжение на первичной обмотке, переходят из закрытого состояния (ток не течет через транзистор) в состояние насыщения, где на транзисторе падает напряжение.
    • В преобразователях напряжения высоковольтных источников питания в большинстве случаев применяется эдс самоиндукции, которая создается на индуктивности в случаях резкого прерывания тока. В качестве прерывателя тока работает транзистор, а первичная обмотка повышающего трансформатора выступает индуктивностью. Выходное напряжение создается на вторичной обмотке и выпрямляется. Подобные схемы способны вырабатывать напряжение до нескольких десятков кВ. Их часто применяют для питания электронно-лучевых трубок, кинескопов и так далее. При этом обеспечивается кпд выше 80%.

    В иды

    Преобразователи можно классифицировать по ряду направлений.

    Преобразователи напряжения постоянного тока:
    • Регуляторы напряжения.
    • Преобразователи уровня напряжения.
    • Линейный стабилизатор напряжения.
    Преобразователи переменного тока в постоянный:
    • Импульсные стабилизаторы напряжения.
    • Блоки питания.
    • Выпрямители.
    Преобразователи постоянного тока в переменный:
    • Инверторы.
    Преобразователи переменного напряжения:
    • Трансформаторы переменной частоты.
    • Преобразователи частоты и формы напряжения.
    • Регуляторы напряжения.
    • Преобразователи напряжения.
    • Трансформаторы разного рода.
    Преобразователи напряжения в электронике в соответствии с конструкцией также делятся на следующие типы:
    • На пьезоэлектрических трансформаторах.
    • Автогенераторные.
    • Трансформаторные с импульсным возбуждением.
    • Импульсные источники питания.
    • Импульсные преобразователи.
    • Мультиплексорные.
    • С коммутируемыми конденсаторами.
    • Бестрансформаторные конденсаторные.
    Особенности
    • При отсутствии ограничений по объему и массе, а также при высоком значении питающего напряжения преобразователи рационально использовать на тиристорах.
    • Полупроводниковые преобразователи на тиристорах и транзисторах могу быть регулируемыми и нерегулируемыми. При этом регулируемые преобразователи могут применяться как стабилизаторы переменного и постоянного напряжения.
    • По способу возбуждения колебаний в устройстве могут быть схемы с независимым возбуждением и самовозбуждением. Схемы с независимым возбуждением выполняются из усилителя мощности и задающего генератора. Импульсы с выхода генератора направляются на вход усилителя мощности, что позволяет управлять им. Схемы с самовозбуждением – это импульсные автогенераторы.

    Применение

    • Для распределения и передачи электрической энергии. На электростанциях генераторы переменного тока обычно вырабатывается энергия напряжением 6—24 кВ. Для передачи энергии на дальние расстояния выгодно использовать большее напряжение. Вследствие этого на каждой электростанции ставят трансформаторы, повышающие напряжение.
    • Для различных технологических целей: электротермических установок (электропечные трансформаторы), сварки (сварочные трансформаторы) и так далее.
    • Для питания различных цепей;

    — автоматики в телемеханике, устройств связи, электробытовых приборов;
    — радио- и телевизионной аппаратуры.

    Для разделения электрических цепей данных устройств, в том числе согласования напряжений и так далее. Трансформаторы, применяемые в данных устройствах, в большинстве случаев имеют малую мощность и невысокое напряжение.

    • Преобразователи напряжения практически всех типов широко применяются в быту. Блоки питания многих бытовых приборов, сложных электронных устройств, инверторные блоки широко используются для обеспечения требуемого напряжения и обеспечения автономного энергоснабжения. К примеру, это может быть инвертор, который может быть использован для аварийного или резервного источника питания бытовых приборов (телевизор, электроинструмент, кухонная техника и так далее), потребляющих переменный ток напряжением 220 Вольт.
    • Наиболее дорогими и востребованными в медицине, энергетике, военной сфере, науке и промышленности являются преобразователи, которые имеют выходное переменное напряжение с чистой формой синусоиды. Подобная форма пригодна для работы устройств и приборов, которые имеют повышенную чувствительность к сигналу. К ним можно отнести измерительную и медицинскую аппаратуру, электрические насосы, газовые котлы и холодильники, то есть оборудование, в составе которых имеются электромоторы. Преобразователи часто необходимы и для продления времени службы оборудования.

    Отправить ответ

      Подписаться  
    Уведомление о
    Adblock
    detector