Как из галогеналкана получить спирт

Свойства спиртов

Получение спиртов

Спирты — производные углеводородов, в молекулах которых есть одна или несколько гидроксильных групп OH.

Все спирты делятся на одноатомные и многоатомные

Одноатомные спирты

Одноатомные спирты — спирты, у которых имеется одна гидроксильная группа.
Бывают первичные, вторичные и третичные спирты:

— у первичных спиртов гидроксильная группа находится у первого атома углерода, у вторичных — у второго, и т.д.

Свойства спиртов, которые являются изомерными, во многом похожи, но в некоторых реакциях они ведут себя по-разному.

Спирт этиловый

Сравнивая относительную молекулярную массу спиртов (Mr) c относительными атомными массами углеводородов, можно заметить, что спирты имеют более высокую температуру кипения. Это объясняется наличием водородной связи между атомом H в группе ОН одной молекулы и атомом O в группе -ОН другой молекулы.

При растворении спирта в воде образуются водородные связи между молекулами спирта и воды. Этим объясняется уменьшение объёма раствора (он всегда будет меньше, чем сумма объёмов воды и спирта по отдельности).

Наиболее ярким представителем химических соединений этого класса является этиловый спирт. Его химическая формула C2H5-OH. Концентрированный этиловый спирт (он же — винный спирт или этанол) получают из разбавленных его растворов путём перегонки; действует опьяняюще, а в больших доза — это сильный яд, который разрушает живые ткани печени и клетки мозга.

Муравьиный спирт (метиловый)

При этом нужно отметить, что этиловый спирт полезен в качестве растворителя, консерванта, средства понижающего температуру замерзания какого-либо препарата. Ещё один не менее известный представитель этого класса — метиловый спирт (его ещё называют — древесный или метанол). В отличии от этанола метанол смертельно опасен даже в самых малых дозах! Сначала он вызывает слепоту, затем просто "убивает"!

Многоатомные спирты

Многоатомные спирты — спирты, имеющие несколько гидроксильных групп OH.
Двухатомными спиртами называются спирты,содержащие две гидроксильные группы (группа ОН); спирты содержащие три гидроксильные группы — трёхатомные спирты. В их молекулах две или три гидроксильные группы никогда не оказываются присоединёнными к одному и тому же атому углерода.

Многоатомный спирт — глицерин

Двухатомные спирты ещё называют гликолями, так как они обладают сладким вкусом, — это характерно для всех многоатомных спиртов

Многоатомные спирты с небольшим числом атомов углерода — это вязкие жидкости, высшие спирты — твёрдые вещества. Многоатомные спирты можно получать теми же синтетическими методами, что и предельные многоатомные спирты.

1. Получение этилового спирта (или винный спирт) путём брожения углеводов:

Суть брожения заключается в том, что один из простейших сахаров — глюкоза, получаемый в технике из крахмала, под влиянием дрожжевых грибков распадается на этиловый спирт и углекислый газ. Установлено, что процесс брожения вызывают не сами микроорганизмы, а выделяемые ими вещества — зимазы. Для получения этилового спирта обычно используют растительное сырьё, богатое крахмалом: клубни картофеля, хлебные зёрна, зёрна риса и т.д.

2. Гидратация этилена в присутствии серной или фосфорной кислоты

Читайте также:  Принцип действия лазерного дальномера

3. При реакции галогеналканов со щёлочью:

4. При реакции окисления алкенов

5. Гидролиз жиров: в этой реакции получается всем известный спирт — глицерин

Кстати, глицерин входит в состав многих косметических средств как консервант и как средство, предотвращающее замерзание и высыхание!

Свойства спиртов

1) Горение: Как и большинство органических веществ спирты горят с образованием углекислого газа и воды:

При их горении выделяется много теплоты, которую часто используют в лабораториях (лабораторные горелки). Низшие спирты горят почти бесцветным пламенем, а у высших спиртов пламя имеет желтоватый цвет из-за неполного сгорания углерода.

2) Реакция со щелочными металлами

При этой реакции выделяется водород и образуется алкоголят натрия. Алкоголяты похожи на соли очень слабой кислоты, а также они легко гидролизуются. Алкоголяты крайне неустойчивы и при действии воды — разлагаются на спирт и щелочь. Отсюда следует вывод, что одноатомные спирты не реагируют со щелочами!

3) Реакция с галогеноводородом
C2H5-OH + HBr —> CH3-CH2-Br + H2O
В этой реакции образуется галогеноалкан (бромэтан и вода). Такая химическая реакция спиртов обусловлена не только атомом водорода в гидроксильной группе, но и всей гидроксильной группой! Но эта реакция обратима: для её протекания нужно использовать водоотнимающее средство, например серную кислоту.

4) Внутримолекулярная дегидратация (в присутствии катализатора H2SO4)

В этой реакции при действии концентрированной серной кислоты и при нагревании происходит дегидратация спиртов. В процессе реакции образуется непредельный углеводород и вода.
Отщепление атома водорода от спирта может происходить в его же молекуле (то есть происходит перераспределение атомов в молекуле). Эта реакция является межмолекулярной реакцией дегидратации. Например, так:

В процессе реакции происходит образование простого эфира и воды.

5) реакция с карбоновыми кислотами:

Если добавить к спирту карбоновую кислоту, например уксусную, то произойдёт образование простого эфира. Но сложные эфиры менее устойчивы, чем простые эфиры. Если реакция образования простого эфира почти необратима, то образование сложного эфира — обратимый процесс. Сложные эфиры легко подвергаются гидролизу, распадаясь на спирт и карбоновую кислоту.

6) Окисление спиртов.

Кислородом воздуха при обычной температуре спирты не окисляются, но при нагревании в присутствии катализаторов идёт окисление. Примером может служить оксид меди (CuO), марганцовка (KMnO4), хромовая смесь. При действии окислителей получаются различные продукты и зависят от строения исходного спирта. Так, первичные спирты превращаются в альдегиды (реакция А), вторичные — в кетоны (реакция Б), а третичные спирты устойчивы к действию окислителей.

  • — a) для первичных спиртов
  • — б) для вторичных спиртов
  • — в) третичные спирты оксидом меди не окисляются!

Что касается многоатомных спиртов, то они имеют сладковатый вкус, но некоторые из них ядовиты. Свойства многоатомных спиртов похожи на одноатомные спирты, при этом различие в том, что реакция идёт не по одной к гидроксильной группе, а по нескольким сразу.
Одно из основных отличий — многоатомные спирты легко вступают в реакцию гидроксидом меди. При этом получается прозрачный раствор ярко сине-фиолетового цвета. Именно этой реакцией можно выявлять наличие многоатомного спирта в каком-либо растворе.

Взаимодействуют с азотной кислотой:

С точки зрения практического применения наибольший интерес представляет реакция с азотной кислотой. Образующийся нитроглицерин и динитроэтиленгликоль используют в качестве взрывчатых веществ, а тринитроглицерин — ещё и в медицине, как сосудорасширяющее средство.

Читайте также:  Краскопульт для покраски мебели как выбрать

Этиленгликоль

Этиленгликоль — типичный представитель многоатомных спиртов. Его химическая формула CH2OH — CH2OH. — двухатомный спирт. Это сладкая жидкость, которая способно отлично растворяться в воде в любых пропорциях. В химических реакциях может участвовать как одна гидроксильная группа (-OH), так и две одновременно.


этиленгликоль

Этиленгликоль — его растворы — широко применяются как антиобледенительное средство (антифризы). Раствор этиленгликоля замерзает при температуре -34 0 C, что в холодное время года может заменить воду, например для охлаждения автомобилей.

При всей пользе этиленгликоля нужно учитывать, это это очень сильный яд!

Глицерин

Все мы видели глицерин. Он продаётся в аптеках в тёмных пузырьках и представляет собой вязкую бесцветную жидкость, сладковатую на вкус. Глицерин — это трёхатомный спирт. Он очень хорошо растворим в воде, кипит при температуре 220 0 C.

Химические свойства глицерина во многом сходны со свойствами одноатомных спиртов, но глицерин может реагировать с гидроксидами металлов (например, гидроксидом меди Cu(OH)2), при этом образуются глицераты металлов — химические соединения, подобные солям.

Реакция с гидроксидом меди — типовая для глицерина. В процессе химической реакции образуетс ярко-синий раствор глицерата меди

Эмульгаторы

Эмульгаторы — это высшие спирты, эфиры и другие сложные химические вещества, которые при смешивании с другими веществами, например жирами, образуют стойкие эмульсии. Кстати, все косметические средства также являются эмульсиями! В качестве эмульгаторов часто используют вещества, представляющие собой искусственный воск (пентол, сорбитанолеат), а также триэтаноламин, лицетин.

Растворители

Растворители — это вещества, используемые в основном для приготовления лаков для волос и ногтей. Они представлены в небольшой номенклатуре, так как большинство таких веществ легко воспламенимо и вредно для организма человека. Наиболее распространённым представителем растворителей является ацетон, а также амилацетат, бутилацетат, изобутилат.

Есть также вещества, называемые разбавители. Они, в основном применяются вместе с растворителями для приготовления различных лаков.

Для получения спиртов применяют следующие методы:

  1. Гидратацией алкенов;
  2. Гидроборування алкенов с последующим окислением;
  3. Гидролиз галогенпроизводных углеводородов;
  4. Каталитическое восстановление альдегидов и кетонов;
  5. Реакция альдегидов и кетонов с цинк- и магний органическими соединениями.

Промышленные методы получения спиртов

Промышленные методы получения касаются насыщенных спиртов ($C_1-C_3$).

Метиловый спирт, был обнаружен впервые в середине $XVII$ века, и выделен в чистом виде в 1834 г. Он был синтезирован в 1857, и является одним из старейших продуктов химической промышленности. Сначала его получали в процессе сухой перегонки древесины, а в 1923 в промышленности был внедрен метод синтеза из водорода и окиси углерода.

Метанол добывают, пропуская синтез-газ над смешанным цинк-хромовым катализатором ($ZnO / Cr_2O_3$):

Этанол добывают спиртовым брожением углеводов (глюкозы, фруктозы крахмала, хлебных злаков или целлюлозы) под действием природных фермементов (дрожжей):

Попробуй обратиться за помощью к преподавателям

или гидратацией этилена в газовой фазе с использованием ортофосфорной кислоты, как катализатора процесса добычи технического этанола:

Использование серной кислоты ведет к образованию диэтилсульфатов (этилсульфата), дальнейший гидролиз которых дает этиловый спирт:

Изопропиловый спирт (пропанол-2) добывают каталитической гидратацией пропилена:

Задай вопрос специалистам и получи
ответ уже через 15 минут!

Фенол (гидроксибензол) добывают кумольным методом:

Этот современный промышленный метод — один из самых эффективных и экологических. Он отличается практически полным отсутствием отходов производства, эфективностью, малыми энергетическими затратами и простым аппаратным оформлением.

Читайте также:  Сечение кабеля по мощности и длине таблица

Другие промышленные методы получения фенола (щелочное плавление солей бензолсульфокислоты и гидролиз хлорбензола) потеряли свое практическое значение:

Лабораторные методы получения спиртов и фенолов

Гидратацией алкенов различного строения добывают первичные, вторичные и третичные спирты:

Роль кислотного катализатора заключается в поляризации двойной связи алкена, что облегчает атаку нуклеофильного реагента:

Гидратация пропилена в кислой среде

проходит по следующему механизму:

Гидролиз галогеналканов водой происходит очень медленно. Реакция ускоряется при замене воды раствором гидроксида щелочного металла:

Восстановление альдегидов и кетонов

Каталитическое гидрирование можно проводить при различных условиях, получая первичные или вторичные спирты:

Другие лабораторные методы

Реакцией Гриньяра из альдегидов и кетонов получают спирты различного строения:

Все другие альдегиды образуют вторичные спирты:

Кетоны и производные карбоновых кислот образуют третичные спирты:

Так и не нашли ответ
на свой вопрос?

Просто напиши с чем тебе
нужна помощь

Спирты являются производными углеводородов, в которых один или несколько атомов водорода при sp 3 -гибридных атомах углерода замещены на гидроксильную группу. В соответствии с количеством гидроксильных групп спирты бывают одноатомными (общей формулы R-ОН, где R – углеводородный остаток), и многоатомными , например, двухатомными (диолы) или трехатомными (триолы).

В зависимости от того, с каким атомом углерода связана гидроксильная группа, одноатомные спирты подразделяют на первич-

ные , вторичные и третичные , например:

(2-метил-1-пропанол, или изобутиловыйспирт)

(2-метил-2-пропанол, или т рет -бутиловый спирт)

1. Способы получения

1.1. Гидратация алкенов

Присоединение воды к алкенам с образованием спиртов является реакцией электрофильного присоединения, катализируемой сильной кислотой Бренстеда. Региоселективность реакции, определяемая правилом Марковникова, обусловлена, как и при гидрогалогенировании алкенов, преимущественным протеканием реакции через наиболее устойчивый карбокатион. Так, гидратация 2- метилпропена в присутствии серной кислоты как катализатора приводит к образованию трет -бутилового спирта, поскольку из двух образующихся при протонировании этого алкена карбокатионов более устойчивым является третичный ( трет -бутилкатион).

Гидратацию алкенов можно осуществить и двухстадийно: присоединением серной кислоты с последующим гидролизом образующегося продукта присоединения – алкилгидросульфата, например:

Так как присоединение серной кислоты к алкенам происходит тоже в процессе электрофильной реакции, то общий результат гидратации и в этом случае – гидратация по правилу Марковникова.

1.2. Гидролиз галогенпроизводных

Алкилгалогениды при гидролизе превращаются в соответствующие спирты. Гидролиз представляет собой нуклеофильное замещение и может быть осуществлен как при непосредственном взаимодействии с водой, так и при взаимодействии с водным раствором щелочи (щелочной гидролиз), например:

CH 3 CH 2 CH 2 CH 2

CH 3 CH 2 CH 2 CH 2

В зависимости от строения алкилгалогенида и условий реакции гидролиз может происходить либо по механизму S N 1, либо по механизму S N 2.

1.3. Восстановление карбонильных соединений

Спирты могут быть получены восстановлением альдегидов и кетонов, причем из альдегидов образуются первичные спирты, а из кетонов – вторичные. Восстановление осуществляют либо водородом на катализаторе, либо комплексными гидридами, такими как алюмогидрид лития (LiAlH 4 ) или боргидрид натрия (NaBH 4 ). Кроме того, алюмогидрид лития может восстановить до первичных спиртов карбоновые кислоты и сложные эфиры. Следующие примеры иллюстрируют восстановление карбонильных соединений до спиртов:

CH=O H 2 , Ni CH 2 OH

Отправить ответ

  Подписаться  
Уведомление о
Adblock
detector