Как изменяется сопротивление амперметра с подключением шунта

Расширение пределов измерения электроизмерительных приборов при помощи шунтов и добавочных сопротивлений

Лабораторная работа № 5

Цель работы заключается в изучении методов измерения больших значений силы тока и напряжения, определении зависимости верхнего предела измерения электроизмерительных приборов от значения шунтирующего сопротивления.

Задачами лабораторной работы являются:

· изучение схем подключения шунтирующего сопротивления к амперметру и вольтметру;

· проведение серии экспериментов для различных значений шунтирующего и добавочного сопротивления;

· установление зависимости полученного шунтированием предела измерения прибора от значения сопротивления шунта.

Увеличение предела измерения электроизмерительного прибора связано с необходимостью выдерживания высоких значений силы тока Большие токи вызывали бы увеличение сечения проводов обмотки катушки (обычно диаметр проводов не превышает 0,2 мм), а, следовательно, массы и момента инерции подвижной части прибора. Кроме того, приборы обладают внутренним сопротивлением, наличие которого приводит к тому, что подключение измерительных приборов к цепи влияет на её параметры. При этом наличие внутреннего сопротивления у амперметра приводит к тому, что общее сопротивление участка цепи возрастает, и поэтому сила тока в цепи с амперметром меньше чем сила тока без него. Чем меньше внутреннее сопротивление амперметра, тем меньшее изменение силы тока происходит на том участке цепи, куда включается амперметр. Поэтому пределы измерения по току расширяют с помощью шунтов, а по напряжению – с помощью добавочных резисторов.

Шунтирование – подключение параллельно амперметру с внутренним сопротивлением RA сопротивления Rш, называемого шунтом. Схема подключения приведена на рисунке 1.7. При этом часть тока Iш проходит через шунт, а общий измеряемый ток Im становится больше, чем предел измерения амперметра Im. Такое соединение можно рассматривать как амперметр с новым пределом измерения, равным Im.

Рисунок 1.7 Схема подключения шунта к амперметру

По законам Кирхгофа:

(1.22)

Решение системы уравнений (1.22) относительно I’m будет иметь вид:

(1.23)

Из выражения (1.23) следует, что чем меньше будет сопротивление шунта Rш, тем больше будет новый предел измерения Im. Сопротивление Rш определяется выражением:

(1.24)

где – коэффициент шунтирования.

Вольтметры предназначены для измерения разности потенциалов на участке цепи. Для однородного участка цепи разность потенциалов равна напряжению на участке. Для того чтобы при подключении вольтметра токи в схеме изменялись мало, необходимо, чтобы его внутреннее сопротивление RV было как можно большим. Поэтому к вольтметру последовательно включается добавочное сопротивление, схема включения показана на рис. 1.8.

Пределу измерения вольтметра соответствует максимальный ток вольтметра:

(1.25)

Для изменения предела измерения вольтметра последовательно с ним включают добавочное сопротивление Rд. При этом измеряемое напряжение U’m равно:

(1.26)

Рисунок 1.8 Схема подключения шунта к вольтметру

Пределу измерения вольтметра соответствует максимальный ток вольтметра:

(1.27)

Для изменения предела измерения вольтметра последовательно с ним включают добавочное сопротивление Rд. При этом измеряемое напряжение U’m равно:

(1.28)

где Uд – напряжение на добавочном сопротивлении. Так как ток через вольтметр равен току через добавочное сопротивление, напряжение на добавочном сопротивлении будет равно:

(1.29)

Путем подстановки выражения (1.29) в выражение (1.28) получается:

(1.30)

(1.31)

где – коэффициент изменения предела измерения напряжения.

Шунты встраивают в прибор или выполняют отдельными от прибора. Их изготавливают из манганина, обладающего малым температурным коэффициентом электрического сопротивления. [6]

Расширение пределов измерения приборов – это важная технико-экономическая задача, целью которой является уменьшение объема приборного парка предприятия без ущерба для метрологического обеспечения испытаний изделий и управления технологическими процессами. При наличии средств расширения пределов измерения оказывается возможным применять один и тот же обычно дорогостоящий прибор для измерения величин различного размера. В конкретных ситуациях может потребоваться изменить предел измерения в сторону увеличения верхнего предела измерений, т. е. уменьшить чувствительность прибора, а в других случаях наоборот – повысить чувствительность, т. е. изменить предел измерения в сторону уменьшения верхнего предела измерения. Возможны два варианта решения этой задачи.

Читайте также:  Мягкотелый молоток 6 букв

В первом варианте средства расширения пределов измерения встраиваются в измерительный прибор, который снабжается ручным переключателем пределов. Такой прибор является многопредельным, и метрологические характеристики этого прибора на разных пределах могут различаться. Тогда они нормируются для каждого предела измерения по отдельности. Об этом потребителю сообщается надписями на шкале или в сопроводительной документации.

Во втором варианте используются внешние средства расширения пределов измерений. Этот вариант используется там, где измерения на одном выбранном пределе выполняются в течение длительного времени, например в системах управления технологическим процессом.

Такое внешнее средство расширения пределов измерения есть не что иное, как масштабирующий линейный измерительный преобразователь, который изменяет не вид измеряемой величины, а лишь ее масштаб. Эти преобразователи выпускаются промышленностью как автономные средства измерений. Каждая группа таких преобразователей имеет унифицированные свойства, присоединительные размеры и метрологические характеристики. Поэтому при их соединении с однопредельным измерительным прибором фактически получается новый прибор, метрологические характеристики которого должны быть рассчитаны по метрологическим характеристикам соединенных компонентов.

В качестве внешних средств расширения пределов измерения используются:

— шунты – для расширения пределов измерения силы тока в сторону увеличения максимального значения;

— делители напряжения и добавочные сопротивления – для расширения пределов измерения напряжения в сторону увеличения максимального значения;

— усилители тока и напряжения – для расширения пределов измерения тока или напряжения в сторону уменьшения максимального значения измеряемой величины;

— измерительные трансформаторы тока и напряжения – могут применяться для расширения пределов измерения тока или напряжения в обе стороны, но чаще всего применяются для расширения пределов измерения в сторону увеличения максимального значения измеряемой величины.

Схема соединения однопредельного амперметра с шунтом показана на рис. 5.1.

Шунт имеет четыре зажима. Пара зажимов Л1, Л2 называются токовыми зажимами, к ним подключается линия с измеряемым током. Два других зажима П1, П2потенциальные, к ним подключается амперметр, собственное сопротивление которого показано на рис. 5.1 и обозначено через .

Потенциальные зажимы жестко соединены между определенными точками шунта путем сварки или другими методами, обеспечивающими высокую стабильность расположения этих точек и пренебрежимо малое и стабильное переходное сопротивление от этих точек к потенциальным зажимам. Непосредственное присоединение амперметра к токовым зажимам недопустимо, поскольку в этом случае нестабильность сопротивления контактов в токовых зажимах из-за различных усилий при винтовом соединении, попадания грязи и пыли при большой силе тока будет вызывать соответствующую нестабильность падения напряжения на этих контактах и погрешность измерения, которая не может быть гарантирована изготовителями амперметра и шунта и не может быть определена при измерении.

Сопротивление шунта между точками присоединения потенциальных зажимов обозначено через (рис. 5.1, а).

Пусть – ток полного отклонения стрелки, соответствующий верхнему пределу диапазона измерения амперметра А; – падение напряжения на сопротивлении амперметра при этом токе ( ); – верхний предел диапазона измерения силы тока, который желательно обеспечить с помощью шунта.

Очевидно, что при этой силе тока должно выполняться равенство . Если шунт рассматривать как делитель тока с коэффициентом деления , то его сопротивление

В двухпредельном амперметре (рис. 5.1, б), если принять , сопротивления шунта для пределов и соответственно равны:

, (5.1)

где – коэффициенты шунтирования.

Совместно решая (5.1), можно определить сопротивления шунтов:

Читайте также:  Станина для крепления болгарки

.

Аналогично можно рассчитать сопротивления для многопредельного ступенчатого шунта.

5.2. Добавочные сопротивления

Для расширения пределов измерения напряжения могут использоваться делители напряжения и добавочные сопротивления. Однако из-за того, что делитель напряжения должен потреблять от объекта ток, превышающий ток собственного потребления вольтметра, на практике для расширения пределов измерения вольтметров применяют добавочные сопротивления (рис. 5.2).

Добавочное сопротивление соединяется последовательно с вольтметром. Для изменения предела измерения напряжения с до величина при заданном значении тока полного отклонения стрелки вольтметра определяется из выражений

где – коэффициент расширения предела измерения вольтметра (множитель шкалы).

Для обеспечения совместимости добавочного сопротивления и вольтметра, к которому оно подключается, в документации на вольтметр и, как правило, на его шкале указывается ток полного отклонения стрелки. Подходящее добавочное сопротивление подбирается по следующим признакам:

— по коэффициенту расширения предела измерения;

— по максимально допустимому току через , который не должен быть больше, чем , чтобы добавочное сопротивление не перегревалось этим током;

— по характеристикам инструментальной погрешности созданного таким образом нового вольтметра, которая будет складываться из собственной погрешности вольтметра и погрешности добавочного сопротивления, в т. ч. возникающей в результате перегрева протекающим по нему током.

В многопредельных вольтметрах (рис. 5.2, б) используют ступенчатое включение резисторов и для соответствующих пределов измерения напряжений при заданном токе полного отклонения рамки сопротивления добавочных резисторов рассчитывают по формулам

или ;

или ,

где – коэффициенты расширения пределов.

Добавочные резисторы могут быть внутренними (до 600 В) и наружными (до 1500 В). Наружные добавочные резисторы, в свою очередь, могут быть индивидуальными и взаимозаменяемыми на номинальные токи 0,5; 1; 3; 7,5; 15 и 30 мА.

5.3. Типовые примеры по расчету шунтов и добавочных резисторов

Пример 5.1.Определить пределы измерения токов I1 и I2 в схеме двухпредельного миллиамперметра (рис. 5.1, б) с током полного отклонения рамки измерительного механизма IA = 50 мкА, внутренним сопротивлением RA = 1,0 кОм. Значения сопротивлений резисторов ступенчатого шунта R1 = 0,9 Ом; R2 = 0,1 Ом.

Решение. Ток IA, протекающий через миллиамперметр, связан с измеряемым током I зависимостью

Отсюда .

На пределе измерения тока I1 Rш1 = R1 + R2, а на пределе измерения тока I2 резистор R1 включен последовательно с RA, а шунтом служит R2. Отсюда

Пример 5.2.Для расширения предела измерения амперметра в 50 раз с внутренним сопротивлением RA = 0,5 Ом необходимо подключить шунт. Определить сопротивление шунта, ток полного отклонения прибора и максимальное значение тока на расширенном пределе, если падение напряжения на шунте Uн= 75 мВ.

Решение.Сопротивление шунта Ом.

Ток полного отклонения прибора

Максимальное значение тока на расширенном пределе

Пример 5.3.Амперметр с пределом измерения 100 А имеет наружный шунт сопротивлением Rш = 0,001 Ом. Определить сопротивление измерительной катушки прибора, если ток полного отклонения IA = 25 мA. Определить наибольшую потребляемую амперметром мощность.

Решение.Сопротивление измерительной катушки прибора

RA = Rш(n – 1) = 0,001 Ом (I / IA – 1) = 0,001[(100 A / 25 10 – 3 ) – 1] = 4 Ом.

Потребляемая амперметром мощность

РА = ,

где R – эквивалентное сопротивление параллельно соединенных RA и Rш, рассчитываемое по формуле

Тогда потребляемая мощность РА=

Пример 5.4.Определить значения сопротивлений добавочных резисторов R1, …, R4 в цепи многопредельного магнитоэлектрического вольтметра (см. рис. 5.2, б), который предназначен для измерения напряжения в четырех диапазонах с верхними пределами U1 = 30 B, U2 = 50 B, U3 = 100 B и U4 = 200 B, если ток полного отклонения рамки измерительного механизма вольтметра равен 10 мА, а сопротивление рамки 400 Ом.

Решение. Величина добавочного резистора рассчитывается по формуле

n1 = 30 B/( n2 = 50 B/4 B = 12.5; n3 = 100 B/4 B = 25; n4 = 200 B/4 B = 50.

Отсюда R1 = Rд1 = RV(n1 – 1) = 400(7,5 – 1) = 400 Ом; R2=Rд2Rд1 = 400(12,5 – 1) – 2600 = 4600 – 2600 = 2000 Ом; R3 = Rд3Rд2 = 400(25 – 1) – 4600 = 9600 – 4600 = 5000 Ом; R4 = Rд4Rд3 = 400(50 – 1) – 9600 = 19600 – 9600 = 10000 Ом.

Читайте также:  Кислородный баллон для резки металла

Пример 5.5.Предел измерения вольтметра составляет 7,5 В при внутреннем сопротивлении RV = 200 Ом. Определить добавочное сопротивление, которое необходимо включить для расширения предела измерения до 600 В.

Понятия и формулы

Шунтом называется сопротивление, которое присоединяется параллельно зажимам амперметра (параллельно внутреннему сопротивлению прибора), чтобы увеличить диапазон измерений. Измеряемый ток I разделяется между измерительным шунтом (rш, Iш) и амперметром (rа, Iа) обратно пропорционально их сопротивлениям.

Сопротивление шунта rш=rа х Iа/(I-Iа ).

Для увеличения диапазона измерений в n раз шунт должен иметь сопротивление rш=(n-1)/rа

1. Электромагнитный амперметр имеет внутреннее сопротивление rа=10 Ом, а диапазон измерений до 1 А. Рассчитайте сопротивление rш шунта так, чтобы амперметр мог измерять ток до 20 А (рис. 1).

Измеряемый ток 20 А разветвится на ток Iа=1 А, который потечет через амперметр, и ток Iш, который потечет через шунт:

Отсюда ток, протекающий через шунт, Iш=I-Iа=20-1=19 А.

Измеряемый ток I=20 А должен разделиться в отношении Iа:Iш=1:19.

Отсюда вытекает, что сопротивления ветвей должны быть обратно пропорциональны токам: Iа:Iш=1/rа : 1/rш;

Сопротивление шунта rш=10/19=0,526 Ом.

Сопротивление шунта должно быть в 19 раз меньше, чем сопротивление амперметра rа, чтобы через него проходил ток Iш, в 19 раз больший тока Iа=1 А, который проходит через амперметр.

2. Магнитоэлектрический миллиамперметр имеет диапазон измерений без шунта 10 мА и внутреннее сопротивление 100 Ом. Какое сопротивление должен иметь шунт, если прибор должен измерять ток до 1 А (рис. 2)?

При полном отклонении стрелки через катушку миллиамперметра будет проходить ток Iа=0,01 А, а через шунт Iш:

откуда Iш=I-Iа=1-0,99 A=990 мА.

Ток 1 А разделится обратно пропорционально сопротивлениям: Iа:Iш=rш:rа.

Из этого соотношения найдем сопротивление шунта:

10:990=rш:100; rш=(10х100)/990=1000/990=1,010 Ом.

При полном отклонении стрелки через прибор пройдет ток Iа=0,01 А, через шунт – ток Iш=0,99 А, а по общей цепи – ток I=1 А.

При измерении тока I=0,5 А через шунт пройдет ток Iш=0,492 А, а через амперметр – ток Iа=0,05 А. Стрелка при этом отклоняется до половины шкалы.

При любом токе от 0 до 1 А (при выбранном шунте) токи в ветвях разделятся в отношении rа:rш, т. е. 100:1,01.

3. Амперметр (рис. 3) имеет внутреннее сопротивление rа=9,9 Ом, а сопротивление его шунта 0,1 Ом. В каком отношении разделится измеряемый ток 300 А в приборе и шунте?

Задачу решим при помощи первого закона Кирхгофа: I=Iа+Iш.

Кроме того, Iа:Iш=rш:rа.

Из второго уравнения получим ток Iа и подставим его в первое уравнение:

Ток в приборе Iа=I-Iш=300-297=3 А.

Из всего измеряемого тока через амперметр пройдет ток Iа=3 А, а через шунт Iш=297 А.

Шунт для амперметра

4. Амперметр, внутреннее сопротивление которого 1,98 Ом, дает полное отклонение стрелки при токе 2 А. Необходимо измерить ток до 200 А. Какое сопротивление должен иметь шунт, подключаемый параллельно зажимам прибора?

В данной задаче диапазон измерений увеличивается в 100 раз: n=200/2=100.

Искомое сопротивление шунта rш=rа/(n-1).

В нашем случае сопротивление шунта будет: rш=1,98/(100-1)=1,98/99=0,02 Ом.

Отправить ответ

  Подписаться  
Уведомление о
Adblock
detector