Как называется фигура с 6 углами

Определение

Выпуклый многоугольник называется правильным, если все его стороны равны и все его углы равны.

Замечание

Т.к. сумма всех углов (n) –угольника равна (180^circ(n-2)) , то каждый угол правильного (n) –угольника равен [alpha_n=dfracn cdot 180^circ]

Пример

Каждый угол правильного четырехугольника (т.е. квадрата) равен (dfrac <4-2>4cdot 180^circ=90^circ) ;

каждый угол правильного шестиугольника равен (dfrac<6-2>6cdot 180^circ=120^circ) .

Теоремы

1. Около любого правильного многоугольника можно описать окружность, и притом только одну.

2. В любой правильный многоугольник можно вписать окружность, и притом только одну.

Следствия

1. Окружность, вписанная в правильный многоугольник, касается всех его сторон в серединах.

2. Центры вписанной и описанной окружности у правильного многоугольника совпадают.

Теорема

Если (a) – сторона правильного (n) –угольника, (R) и (r) – радиусы описанной и вписанной окружностей соответственно, то верны следующие формулы: [egin S&=dfrac n2ar\ a&=2Rcdot sindfrac<180^circ>n\ r&=Rcdot cosdfrac<180^circ>n end]

Свойства правильного шестиугольника

1. Сторона равна радиусу описанной окружности: (a=R) .

2. Радиус описанной окружности является биссектрисой угла правильного шестиугольника.

3. Все углы правильного шестиугольника равны (120^circ) .

4. Площадь правильного шестиугольника со стороной (a) равна (dfrac<3sqrt<3>><2>a^2) .

5. Диагонали пересекаются в одной точке и делят его на 6 равносторонних треугольников, у которых высота равна радиусу (r) вписанной в правильный шестиугольник окружности.

6. Инвариантен относительно поворота плоскости на угол, кратный (60^circ) относительно центра описанной окружности (слово “инвариантный” означает, что при таких поворотах правильный шестиугольник перейдёт в себя, то есть такие повороты являются его симметриями).

Замечание

В общем случае правильный (n) -угольник инвариантен относительно поворота на угол (dfrac<360^circ>) .

Шестиугольник — многоугольник с шестью углами. Также шестиугольником называют всякий предмет такой формы.

Площадь шестиугольника без самопересечений

Площадь шестиугольника без самопересечений, заданного координатами вершин, определяется по общей для многоугольников формуле.

Выпуклый шестиугольник

Выпуклым шестиугольником называется шестиугольник, такой, что все его точки лежат по одну сторону от любой прямой, проходящей через две его соседние вершины.

Сумма внутренних углов выпуклого шестиугольника равна 720°.

∑ i = 1 6 α i = ( 6 − 2 ) ⋅ 180 ∘ = 4 ⋅ 180 ∘ = 720 ∘ <displaystyle sum _^<6>alpha _=(6-2)cdot 180^<circ >=4cdot 180^<circ >=720^<circ >>

Доказано [1] , что в любом достаточно большом множестве точек в общем положении содержится выпуклый пустой (то есть не содержащий точек этого множества) шестиугольник. Но существуют сколь угодно большие множества точек в общем положении, в которых нет выпуклого пустого семиугольника [2] . Вопрос о необходимом числе точек по сей день остаётся открытым. Известно, что требуется не менее 30 точек [3] . А если справедлива гипотеза Эрдёша-Секереша о многоугольниках, то не более 129 [4] .

Правильный шестиугольник

Правильным называется шестиугольник, у которого все стороны равны, а все внутренние углы равны 120°.

Звездчатые шестиугольники

Многоугольник, у которого все стороны и углы равны, а вершины совпадают с вершинами правильного многоугольника, называется звёздчатым. Помимо правильного существует ещё один звёздчатый шестиугольник, состоящий из двух правильных треугольников — гексаграмма или звезда Давида.

См. также

Примечания

  1. ↑ Nicolás, Carlos M. (2007), "The empty hexagon theorem", Discrete and Computational Geometry Т. 38 (2): 389–397 , DOI 10.1007/s00454-007-1343-6
  2. ↑ Horton, J. D. (1983), "Sets with no empty convex 7-gons", Canadian Mathematical Bulletin Т. 26 (4): 482–484 , DOI 10.4153/CMB-1983-077-8
  3. ↑ Overmars, M. (2003), "Finding sets of points without empty convex 6-gons", Discrete and Computational Geometry Т. 29 (1): 153–158 , DOI 10.1007/s00454-002-2829-x
  4. ↑ Gerken, Tobias (2008), "Empty convex hexagons in planar point sets", Discrete and Computational Geometry Т. 39 (1–3): 239–272 , DOI 10.1007/s00454-007-9018-x
Читайте также:  Обозначение плюса и минуса на схеме

KH-9 Hexagon

Шестиугольник (англ. KH-9 Hexagon), другое название Большая птица (англ. Big Bird) — серия фотографических спутников видовой разведки запущенных США между 1971 и 1986 годами. Из двадцати запусков, произведённых ВВС США, успешными были все, кроме одного. Отснятая фотоплёнка для обработки и анализа с борта спутника отсылалась назад на Землю в возвращаемых капсулах на парашютах в Тихий океан, где с помощью специальных крюков их подбирали военные самолёты C-130. Наилучшее достигнутое разрешение главных камер составляло 0,6 метра.

В сентябре 2011 года материалы о проекте «Шестиугольник» были рассекречены и один из космических аппаратов проекта был выставлен на всеобщее обозрение.

Бипирамида или дипирамида является трёхмерным многогранником, сформированным из двух пирамид, одна из которых является зеркальным отражением другой. Место соединения пирамид образует общую фигуру в виде многоугольника. Простая бипирамида формируется при сложении двух тетраэдров. При основании пирамиды в виде квадрата, причём боковые грани её равносторонние треугольники, формируется бипирамида, известная как октаэдр.

При увеличении числа сторон многоугольника в основании пирамиды, в пределе формируется круг или эллипс и образуется два конуса, соединённые основаниями.

Элементы, составляющие бипирамиду:

Ребра — линии, соединяющие вершины.

Грани — плоские поверхности, ограниченные рёбрами, треугольной или трапецеидальной формы.

В кристаллографии применяется термин (гексагональная сингония) для классификации кристаллов. Например, гексагональная бипирамида образована из пирамид в основании которых лежит правильный шестиугольник, общий для двух пирамид.

Восьмиугольник — многоугольник с восемью углами.

Сумма внутренних углов выпуклого восьмиугольника равна 1080°.

∑ i = 1 8 α i = ( 8 − 2 ) ⋅ 180 ∘ = 6 ⋅ 180 ∘ = 1080 ∘ <displaystyle sum _^<8><alpha _=>(8-2)cdot 180^<circ >=6cdot 180^<circ >=1080^<circ >>

Внутренний угол правильного восьмиугольника равен 135°.

1080 ∘ 8 = 135 ∘ <displaystyle <frac <1080^<circ >><8>>=135^<circ >> Гирих (математика)

Мозаики «гирих» — это набор пяти плиток, использовавшихся для создания орнамента для украшения зданий в исламской архитектуре. Плитки использовались примерно с 12-го века и орнаменты существенно улучшились к моменту построения усыпальницы Дарб-и Имам в городе Исфахан в Иране (построена в 1453).

Пять плиток мозаики включают:

правильный десятиугольник с внутренними углами 144°;

удлиненный (неправильный выпуклый) шестиугольник с внутренними углами 72°, 144°, 144°, 72°, 144°, 144°;

галстук-бабочка (невыпуклый шестиугольник) с внутренними углами 72°, 72°, 216°, 72°, 72°, 216°;

ромб с внутренними углами 72°, 108°, 72°, 108°;

правильный пятиугольник с внутренними углами 108°.Все рёбра этих плиток имеют одну и ту же длину, а все углы кратны 36° (π/5 радиан). Четыре плитки (кроме пятиугольника) имеют двустороннюю (зеркальную) симметрию относительно двух перпендикулярных осей. Некоторые плитки имеют дополнительные симметрии. В частности, десятиугольник имеет десятикратную вращательную симметрию (вращение на 36°), а пятиугольник имеет пятикратную вращательную симметрию (вращение на 72°).

Собственно, гирих — это линии (орнамента), которым декорированы плитки. Плитки использовались для создания орнамента (гириха). На языке фарси слово گره означает "узел" . В большинстве случаев виден только гирих, (и другие украшения в виде цветов), но не границы самих плиток. Гирих является ломаными отрезками, пересекающими границы плиток по центру под углом 54° (3π/10) к ребру. Две перекрещивающиеся линии гириха пересекают каждое ребро плитки. Большинство плиток имеют единственный орнамент внутри, соответствующий симметрии плитки. Однако десятиугольник имеет два возможных орнамента гириха, один из которых имеет только пятикратную, а не десятикратную симметрию.

Читайте также:  Схема простого сварочного аппарата

Двуугольник — многоугольник с двумя сторонами и двумя углами.

В Евклидовой геометрии двуугольник считается вырожденной фигурой, так как его две стороны совпадают.

В сферической геометрии четыре двуугольника образуются при пересечении двух больших окружностей.

Многогранник, многоугольник или мозаика является изотоксальным или рёберно транзитивным, если его симметрии действуют транзитивно на его рёбрах. Неформально это означает, что имеется только один вид рёбер у объекта — если даны два ребра, существует параллельный перенос, вращение и/или зеркальное отражение, переводящее одно ребро в другое, не меняя область, занимаемую объектом.

Термин изотоксальный происходит от греческого τοξον, означающего дуга.

Квадра́т — правильный четырёхугольник, то есть четырёхугольник, у которого все углы равны и все стороны равны. Квадрат является одновременно частным случаем ромба и прямоугольника.

Многоуго́льник — геометрическая фигура, обычно определяемая как часть плоскости, ограниченная замкнутой ломаной, звенья которой не пересекаются.

Мозаика Пенроуза, плитки Пенроуза — общее название трёх типов непериодического разбиения плоскости. Названы в честь английского математика Роджера Пенроуза, который исследовал эти разбиения в 70-х годах XX века.

Одноугольник (генагон или моногон) — фигура в геометрии представляет собой многоугольник с одним краем и одной вершиной. Обозначается символом <1>. Имеет только одну сторону и только один внутренний угол.

Правильный девятиугольник — это правильный многоугольник с девятью сторонами.

Правильный (равносторонний, или равноугольный) треугольник — это правильный многоугольник с тремя сторонами, простейший из правильных многоугольников. Все стороны правильного треугольника равны между собой, все углы также равны и составляют 60°. В равностороннем треугольнике высота является и биссектрисой, и медианой.

Правильный шестиугольник (гексагон) — правильный многоугольник с шестью сторонами.

Прямоугольник — четырехугольник, у которого все углы прямые (равны 90 градусам).

В евклидовой геометрии для того, чтобы четырёхугольник был прямоугольником, достаточно, чтобы хотя бы три его угла были прямые, тогда четвёртый угол в силу теоремы о сумме углов многоугольника также будет равен 90°. В неевклидовой геометрии, где сумма углов четырёхугольника не равна 360°, прямоугольников не существует.

Ромб (др.-греч. ῥόμβος, лат. rombus, в буквальном переводе: «бубен») — это параллелограмм, у которого все стороны равны.

То́чка Лемуа́на (точка пересечения симедиан, точка Гребе, обозначается K <displaystyle K> или L <displaystyle L> ) — одна из замечательных точек треугольника.

Усечённый октаэдр — полуправильный многогранник, состоящий из 14 граней (8 правильных шестиугольников и 6 квадратов). В усечённом октаэдре 24 одинаковых вершины, в каждой из которых сходятся два шестиугольника и квадрат, а также 24 ребра, каждое из которых разделяет шестиугольник и квадрат, и 12 рёбер, каждое из которых разделяет два шестиугольника. Двойственный к усечённому октаэдру многогранник — преломлённый куб или тетракисгексаэдр.

Для усечённого октаэдра с длиной ребра a <displaystyle a> можно выразить некоторые количественные характеристики:

Представляет собой один из многогранников, замощающих трёхмерное пространство. Ячейка в форме усечённого октаэдра используется при моделировании молекулярной динамики с периодическими граничными условиями для увеличения эффективности вычислений по сравнению с ячейками в форме параллелепипеда.

Читайте также:  С345 3 гост 27772 88 марка стали

Центрированные шестиугольные числа – это центрированные фигурные числа, которые представляют шестиугольник с точкой в центре и все остальные окружающие точки находятся в шестиугольной решётке.

n-ое центрированное шестиугольное число задается формулой

n 3 − ( n − 1 ) 3 = 3 n ( n − 1 ) + 1. <displaystyle n^<3>-(n-1)^<3>=3n(n-1)+1.>

Представление формулы в виде

1 + 6 ( 1 2 n ( n − 1 ) ) <displaystyle 1+6left(<1 over 2>n(n-1)
ight)>

показывает, что центрированное шестиугольное число для n на 1 больше чем шестикратная величина (n−1)-го треугольного числа.

Несколько первых центрированных шестиугольных чисел:

1, 7, 19, 37, 61, 91, 127, 169, 217, 271, 331, 397, 469, 547, 631, 721, 817, 919.

Можно заметить, что по основанию 10 последний знак центрированных шестиугольных чисел имеют последовательность 1-7-9-7-1.

Центрированные шестиугольные числа имеют практическое значение управлении логистики, например , в упаковке круглых предметов в больший круглый контейнер, таких как Венские сосиски в круглые банки, или упаковке проводов в кабель.

Сумма первых n центрированных шестиугольных чисел равна n 3 . Таким образом, последовательности центрированных шестиугольных пирамидальных чисел и кубических чисел идентичны, но представляют различные (геометрические) формы. С другой стороны, центрированные шестиугольные числа – это разность двух соседних кубов, так что центрированные шестиугольные числа — это фигурное представление кубов. Также, простые центрированные шестиугольные числа есть кубические простые числа.

Разность (2n) 2 и n-го центрированного шестиугольного числа равна 3n 2 + 3n − 1, а разность (2n − 1) 2 и n-го центрированного шестиугольного числа есть прямоугольное число. [какое?]

Гигантский шестиугольник — не имеющий на сегодняшний день строгого научного объяснения — атмосферный феномен на планете Сатурн. Представляет собой геометрически правильный шестиугольник с поперечником в 25 тысяч километров, находящийся на северном полюсе Сатурна. По всей видимости, шестиугольник является вихрем. Прямые «стены» вихря уходят вглубь атмосферы на расстояние до 100 километров. При изучении вихря в инфракрасном диапазоне наблюдаются светлые участки, представляющие собой гигантские прорехи в облачной системе, которые простираются, как минимум, на 75 километров вглубь атмосферы.

Правильный шестиугольник — это такой шестиугольник у которого все шесть сторон равны и его шесть углов равны.

Центр правильного шестиугольника — на рисунке точка O равноудалена от вершин.

Светлая линия обозначающая высоту треугольника AOB : h называется — апофемой.

Отрезки OA , OB — радиусы правильного шестиугольника.

Обозначения на рисунке для правильного шестиугольника

n=6 число сторон и вершин правильного шестиугольника, шт
α центральный угол правильного шестиугольника, радианы, °
β половина внутреннего угла правильного шестиугольника, радианы, °
γ внутренний угол правильного шестиугольника, радианы, °
a сторона правильного шестиугольника, м
R радиусы правильного шестиугольника, м
p полупериметр правильного шестиугольника, м
L периметр правильного шестиугольника, м
h апофемы правильного шестиугольника, м

Основные формулы для правильного шестиугольника

Периметр правильного шестиугольника

Полупериметр правильного шестиугольника

Центральный угол правильного шестиугольника в радианах

Центральный угол правильного шестиугольника в градусах

Половина внутреннего угла правильного шестиугольника в радианах

Половина внутреннего угла правильного шестиугольника в градусах

Внутренний угол правильного шестиугольника в радианах

Внутренний угол правильного шестиугольника в градусах

Площадь правильного шестиугольника

Отсюда получим апофему правильного шестиугольника

Отправить ответ

  Подписаться  
Уведомление о
Adblock
detector