Как обозначается индуктивность контура

Эл.ток создает собственное магнитное поле. Магнитный поток через контур пропорционален индукции магнитного поля (Ф

B), индукция пропорциональна силе тока в проводнике
(B

I), следовательно магнитный поток пропорционален силе тока (Ф

ЭДС самоиндукции зависит от скорости изменения силы тока в эл.цепи, от свойств проводника
(размеров и формы) и от относительной магнитной проницаемости среды, в которой находится проводник.

Физическая величина, показывающая зависимость ЭДС самоиндукции от размеров и формы проводника и от среды, в которой находится проводник, называется коэффициентом самоиндукции или индуктивностью.

Индуктивность — физ. величина, численно равная ЭДС самоиндукции, возникающей в контуре при изменении силы тока на 1 Ампер за 1 секунду.

Также индуктивность можно рассчитать по формуле:

где Ф — магнитный поток через контур, I — сила тока в контуре.

Единицы измерения индуктивности в системе СИ:

Индуктивность катушки зависит от: числа витков, размеров и формы катушки и от относительной магнитной проницаемости среды

Индуктивность взаимная — величина, характеризующая магнитную связь двух или более электрических цепей (контуров). Если имеется два проводящих контура , то часть линий магнитной индукции, создаваемых током в первом контуре, будет пронизывать площадь, ограниченную вторым контуром (т. е. будет сцеплена с контуром 2).

Магнитный поток Ф12 через контур 2, созданный током I1 в контуре 1, прямо пропорционален току:

Коэффициент пропорциональности M12 зависит от размеров и формы контуров 1 и 2, расстояния между ними, их взаимного расположения, а также от магнитной проницаемости окружающей среды и называется взаимной индуктивностью или коэффициентом взаимной индукции контуров 1 и 2. В системе СИ И. в. измеряется в Генри.

Трансформаторная ЭДС. Принцип действия трансформатора основан на явлении электромагнитной индукции. Линии индукции магнитного поля, создаваемого переменным током в первичной обмотке, благодаря наличию сердечника практически без потерь пронизывают витки вторичной обмотки. Поскольку магнитный поток во вторичной обмотке изменяется со временем (т.к. в первичной обмотке переменный ток), то согласно закону Фарадея в ней возбуждается ЭДС индукции. Трансформатор может работать только на переменном токе, т.к. магнитный поток, созданный постоянным током, не изменяется с течением времени.

Пусть первичная обмотка трансформатора подключена к источнику тока с переменной ЭДС E1 и с действующим значением напряжения U1. На вторичной обмотке ЭДС E2 и напряжение U2.

Из законов Ома следует, что напряжение на обмотке равно

(1)

где r — сопротивление обмотки. При изготовлении трансформатора сопротивление первичной обмотки r1 делают очень малым, поэтому часто им можно пренебречь. Тогда

Если пренебречь потерями магнитного потока в сердечнике, то в каждом витке вторичной обмотки будет индуцироваться точно такая же ЭДС индукции e1, как и ЭДС индукции e2 в каждом витке первичной обмотки, т.е. e1 = e2. Следовательно, отношение ЭДС в первичной E1 и вторичной E2 обмотках равно отношению числа витков в них:

(2)

Трансформаторный ток. Токи обмоток обратно пропорциональны числам витков (I1/I2 приблиз = w1/w2 = 1/n). С увеличением тока активно-индуктивного приемника вторичное напряжение несколько снижается.

Рис.1.11. К определению магнитного потока рассеяния в катушке с ферромагнитным сердечником

часть магнитного потока катушки замыкается не по сердечнику, а по воздуху. Эта часть потока носит название потока рассеивания Фр (рис. 1.11). Таким образом, полный поток, сцепленный с витками катушки равен

Читайте также:  Сверлильно присадочные станки для мебели
. (1.14)

На основании закона Ома для магнитной цепи (1.7) можно написать выражение для потока рассеяния:

.

Так как , то .То есть поток рассеяния , в отличие от потока в сердечнике, совпадает по фазе с током и связан с ним линейной зависимостью. Следовательно, на векторной диаграмме вектор потока будет совпадать с вектором тока (рис.1.12).

Рис.1.12. Векторная диаграмма магнитных потоков, ЭДС и токов катушки с ферромагнитным сердечником

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Сдача сессии и защита диплома — страшная бессонница, которая потом кажется страшным сном. 8623 — | 7077 — или читать все.

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

1). Индуктивность (или коэффициент самоиндукции) — коэффициент пропорциональности между электрическим током, текущим в каком-либо замкнутом контуре, и магнитным потоком, создаваемым этим током через поверхность, краем которой является этот контур.

Ф — магнитный поток, I — ток в контуре, L — индуктивность.

Нередко говорят об индуктивности прямого длинного провода. В этом случае и других (особенно — в не отвечающих квазистационарному приближению) случаях, когда замкнутый контур непросто адекватно и однозначно указать, приведённое выше определение требует особых уточнений; отчасти полезным для этого оказывается подход (упоминаемый ниже), связывающий индуктивность с энергией магнитного поля.

Через индуктивность выражается ЭДС самоиндукции в контуре, возникающая при изменении в нём тока:

Из этой формулы следует, что индуктивность численно равна ЭДС самоиндукции, возникающей в контуре при изменении силы тока на 1 А за 1 с.

При заданной силе тока индуктивность определяет энергию магнитного поля, создаваемого этим током:

Практически участки цепи со значительной индуктивностью выполняют в виде катушек индуктивности. Элементами малой индуктивности (применяемыми для больших рабочих частот) могут быть одиночные (в том числе и неполные) витки или даже прямые проводники; при высоких рабочих частотах необходимо учитывать индуктивность всех проводников.

Для имитации индуктивности, т.е. ЭДС на элементе, пропорциональной и противоположной по знаку скорости изменения тока через этот элемент, в электронике используются и устройства, не основанные на электромагнитной индукции (см. Гиратор); такому элементу можно приписать определённую эффективную индуктивность, используемую в расчётах полностью (хотя вообще говоря с определёнными ограничивающими условиями) аналогично тому, как используется обычная индуктивность.

Обозначение и единицы измерения:

В системе единиц СИ индуктивность измеряется в генри, сокращённо Гн. Контур обладает индуктивностью в один генри, если при изменении тока на один ампер в секунду на выводах контура будет возникать напряжение в один вольт.

В вариантах системы СГС — системе СГСМ и в гауссовой системе индуктивность измеряется в сантиметрах (1 Гн = 109 см; 1 см = 1 нГн); для сантиметров в качестве единиц индуктивности применяется также название абгенри. В системе СГСЭ единицу измерения индуктивности либо оставляют безымянной, либо иногда называют статгенри (1 статгенри ≈ 8,987552·1011 генри, коэффициент перевода численно равен 10-9 от квадрата скорости света, выраженной в см/с).

Символ L, используемый для обозначения индуктивности, был принят в честь Эмилия Христиановича Ленца (Heinrich Friedrich Emil Lenz). Единица измерения индуктивности названа в честь Джозефа Генри(Joseph Henry). Сам термин индуктивность был предложен Оливером Хевисайдом (Oliver Heaviside) в феврале 1886 года.

Читайте также:  Как точить ножи круглым камнем

Материал из Википедии — свободной энциклопедии

2). Индуктивность, коэффициент самоиндукции (L) — отношение потокосцепления самоиндукции цепи к силе тока в ней. Характеризует связь потокосцепления самоиндукции с силой тока контура. Измеряется в генри (Г). Индуктивность кольцевой катушки L=μaW2S/l, где W — количество витков; S — поперечное сечение катушки; l — длина катушки; μa — магнитная проницаемость среды.

Электрический ток, текущий в замкнутом контуре, создает вокруг себя магнитное поле, индукция которого, по закону Био-Савара-Лапласа пропорциональна току. Поэтому сцепленный с контуром магнитный поток пропорционален току в контуре:

где коэффициент пропорциональности L называется индуктивностью контура.

Пример: индуктивность длинного соленоида.

Потокосцепление соленоида (полный магнитный поток сквозь соленоид):

, откуда:

где N — число витков соленоида, l — его длина, S — площадь, μ магнитная проницаемость сердечника.

Индуктивность контура в общем случае зависит только от геометрической формы контура, его размеров и магнитной проницаемости той среды, в которой он находится.

В этом смысле индуктивность контурааналог электрической емкости уединенного проводника, которая также зависит только от формы проводника, его размеров и диэлектрической проницаемости среды.

32. Самоиндукция.

При изменении силы тока в контуре будет изменяться и сцепленный с ним магнитный поток, а это, в свою очередь будет индуцировать ЭДС в этом контуре. Возникновение ЭДС индукции в проводящем контуре при изменении в нем силы тока называется самоиндукцией.

Единица индуктивности — генри (Гн): 1Гн — индуктивность такого контура, магнитный поток самоиндукции которого при токе в IA равен 1В6 (1Гн=1Вб/А=1В-c/А).

Из закона Фарадея ЭДС самоиндукции .

Если контур не деформируется и магнитная проницаемость среды не

изменяется, то L = const и ЭДС самоиндукции:

где знак минус, обусловленный правилом Ленца, показывает, что наличие индуктивности в контуре приводит к замедлению изменения тока в нем.

Если ток со временем возрастает, то , т.е. ток самоиндукции направлен навстречу току, обусловленному внешним источником, и замедляет его возрастание.

Если ток со временем убывает, то , т.е. ток самоиндукции имеет такое же направление, как и убывающий ток в контуре, и замедляет его убывание.

Таким образом, контур, обладая определенной индуктивностью, приобретает электрическую "инертность".

33. Токи при размыкании и замыкании цепи.

При всяком изменении сипы тока в проводящем контуре возникает ЭДС самоиндукции, в результате чего в контуре появляются дополнительные токи, называемые экстратоками самоиндукции.

Пусть в цепи сопротивлением R и индуктивностью L под действием внешней ЭДС Θтечет постоянный ток . В момент времени t = 0 выключим источник тока. Возникает ЭДС самоиндукции , препятствующая уменьшению тока. Ток в цепи определяется законом Ома , или . Разделяем переменные:

, и интегрируем по I (oт до I) и по t (от 0 до t): , или

(кривая 1)

где постоянная, называемая временем релаксации — время, в течение которого сила тока уменьшается в ераз.

Таким образом, при выключении источника тока сила тока убывает по экспоненциальному закону (а не мгновенно).

Оценим значение ЭДС самоиндукции при мгновенном увеличении сопротивления от до R:

, откуда

Т.е. при резком размыканииконтура ( ) ЭДС самоиндукции может во много раз превысить Θ, что может привести к пробою изоляции и выводу из строя измерительных приборов.

Читайте также:  Трехфазное реле давления для компрессора

При замыкании цепи помимо внешней ЭДС Θвозникает ЭДС самоиндукции , препятствующая возрастанию тока. По закону Ома, или . Можно показать, что решение этого уравненияимеет вид:

(кривая 2)

где установившийся ток (при )

Таким образом, при включении источника тока сила тока возрастает по экспоненциальному закону (а не мгновенно).

34. Взаимная индукция.

Взаимной индукцией называется явление возбуждения ЭДС электро­магнитной индукции в одной электрической цепи при изменении электрического тока в другой цепи или при изменении взаимного расположения этих двух цепей.

Рассмотрим два неподвижных контура 1 и 2 с токами I1 и I2, расположенных достаточно близко друг от друга. При протекании в контуре 1 тока I1 магнитный поток пронизывает второй контур:

, аналогично

Коэффициенты пропорциональности и равны друг другу и называются взаимной индуктивностью контуров.

При изменении силы тока в одном из контуров, в другом индуцируется ЭДС:

,

Взаимная индуктивность контуров зависит от геометрической формы, размеров, взаимного расположения контуров и от магнитной проницаемости окружающей контуры среды.

и током 1^ создает поле Магнитный поток сквозь один

Для примера рассчитаем взаимную индуктивность двух катушек, намотанных на тороидальный сердечник.

Первая катушка с числом витков и током создает поле . Магнитный виток второй катушки

где l— длина сердечника по средней линии.
Тогда полный магнитный поток (потокосцепление) сквозь вторичную обмотку, содержащую N2 витков:

. Поскольку поток Ψ создается током , то

Данное устройство является примером трансформатора.

35. Трансформаторы.

Принцип действия трансформаторов, применяемых для повышения или понижения напряжения переменного тока, основан на явлении взаимной индукции. Переменный ток , создает в первичной обмотке переменное магнитное поле. Это вызывает во вторичной обмотке появление ЭДС взаимной индукции. При этом:

где и — число витков в первичной и вторичной обмотках, соответственно.

Отношение , показывающее, во сколько раз ЭДС во вторичной обмотке трансформатора больше <или меньше), чем в первичной, называется коэффициентом трансформации.

Если k>1, то трансформатор — повышающий, если к

Тогда работа по созданию магнитного потока Ф будет равна

Энергия магнитного поля, связанного с контуром.

На примере однородного магнитного поля внутри длинного соленоида выразим энергию магнитного поля через величины, характеризующие это поле в окружающем пространстве.

Индуктивность соленоида: Отсюда: .

Магнитная индукция поля соленоида: Отсюда: .

По определению вектора напряженности магнитного поля .

Используя эти соотношения

где Sl=V — объем соленоида.

Магнитное поле длинного соленоида однородно и сосредоточено внутри него, поэтому энергия заключена в объеме соленоида и распределена в нем с объёмной плотностью

Эти соотношения носят общий характер и справедливы и для неоднородных полей, но только для сред, для которых связь между и линейная (т.е. для пара- и диамагнетиков).

Выражение для объемной плотности энергии магнитного поля аналогично соответствующему выражению для объемной плотности энергии электростатического поля: , с той разницей, что электрические величины заменены в нем магнитными.

Отправить ответ

  Подписаться  
Уведомление о
Adblock
detector