Какая передача преобразует вращательное движение в поступательное

Обработка дерева и металла

Общее понятие о передачах между валами

Между валами двигателя и рабочей машины, а также между органами самой машины устанавливают механизмы для включения и выключения, изменения скорости и направления движения, носящие общее название — передачи. Передачи вращательного движения широко применяются в механизмах и машинах. Они служат для изменения частоты и направления вращения, обеспечивают непрерывное и равномерное движение.

Вращательное движение в машинах и механизмах передается посредством гибких передач — ременных, цепных и через жесткие передачи — фрикционные, зубчатые. В ременных и фрикционных передачах используются силы трения, а в зубчатых и цепных — непосредственное механическое зацепление элементов передачи. Каждая из передач имеет ведущее звено, сообщающее движение, и ведомые звенья, через которые движение передается от данного механизма к другому, связанному с ним.

Важнейшей характеристикой передач вращательного движения является передаточное отношение, или передаточное число.

Отношение угловой скорости, частоты вращения (числа оборотов в минуту) и диаметров одного из валов к соответствующим величинам другого вала, участвующего в совместном вращении с первым валом, называется передаточным отношением, которое принято обозначать буквой и. Отношение частоты вращения ведущего вала к частоте вращения ведомого называют передаточным числом, которое показывает, во сколько раз ускоряется или замедляется движение.

Этот вид гибкой передачи наиболее распространен. По сравнению с другими видами механических передач, они позволяют наиболее просто и бесшумно передать крутящий момент от двигателя или промежуточного вала к рабочему органу станка в достаточно широком диапазоне скоростей и мощностей. Ремень охватывает два шкива, насаженных на валы. Нагрузка передается силами трения, возникающими между шкивом и ремнем вследствие натяжения последнего. Эти передачи бывают с плоским ремнем, с клиновым ремнем и круглым ремнем.

Различают ременные передачи: открытую, перекрестную и полуперекрестную.

В открытой передаче валы параллельны друг другу и шкивы вращаются в одном направлении. В перекрестной передаче валы расположены параллельно, но при этом ведущий шкив вращается, например, по часовой стрелке, а ведомый — против часовой стрелки, т. е. в обратном направлении полуперекрестную передачу применяют между валами, оси которых расположены в разных плоскостях под углом друг к другу.

В приводах машин применяются плоские ремни — кожаные, хлопчатобумажные цельнотканые, хлопчатобумажные шитые, тканые прорезиненные и клиновидные. Используются также шерстяные тканые ремни. В станках применяются главным образом ремни кожаные, прорезиненные и клиновидные. Для уменьшения скольжения ремня вследствие недостаточного трения из-за небольшого угла обхвата применяют натяжные ролики. Натяжной ролик представляет собой промежуточный шкив на шарнирно укрепленном рычаге. Под действием груза на длинном плече рычага ролик нажимает на ремень, натягивая его и увеличивая угол обхвата ремнем большого шкива.

Рис. 1. Передачи с плоским ремнем:
а — открытая: б — перекрестная, в — полуперекрестная, с — с натяжным роликом

Диаметр натяжного ролика не должен быть меньше диаметра малого шкива. Натяжной ролик следует устанавливать у ведомой ветви не слишком близко к шкивам.

Передача клиновыми (текстропными) ремнями широко распространены в промышленности, они просты и надежны в эксплуатации. Основное преимущество клиновых ремней — лучшее сцепление их по шкивом и относительно малое скольжение. Причем габариты передачи получаются значительно меньше по сравнению с плоскими ремнями.

Для передачи больших крутящих усилий применяют многоручьевые клиноременные приводы со шкивами обода, которые оснащены рядом канавок.

Клиновидные ремни нельзя удлинять или укорачивать, их применяют определенной длины.

ГОСТ предусматривает для клиноременных приводов общего назначения семь сечений клиновых ремней, имеющих обозначения О, А, Б, В, Г, Д и Е (О — самое малое сечение).

Номинальная длина клиновых ремней (длина по их внутреннему периметру) от 500 до 1400 мм. Угол натяжения ремня равен 40°.

Клиновидные ремни подбирают по сечению в зависимости от передаваемой мощности и предусматриваемой скорости вращения.

Передачи с широким клиновидным ремнем получают все большее распространение. Эти передачи дают возможность бесступенчато регулировать скорость вращения рабочего органа на ходу под нагрузкой, что позволяет установить оптимальный режим работы Наличие такой передачи в станке позволяет механизировать и автоматизировать процесс обработки.

На рис. 2, б показана передача с широким клиновидным ремнем, которая состоит из двух обособленных раздвижных ведущего и ведомого шкивов. Ведущий шкив при помощи ступицы закреплен консольно на валу электродвигателя. На ступице закреплен неподвижно конус. Подвижной конус закреплен на стакане, соединенном при помощи шлицев со ступицей, и прижат пружиной. Ведомый шкив также состоит из подвижного стакана и неподвижного, конусов со ступицей, соединенной с валом привода. Управление передачей осуществляется специальным устройством (на рисунке не показано) путем перемещения стакана подвижного ведомого конуса. При приближении конусов ремень удаляется от оси вращения шкива, одновременно приближаясь к оси вала. Ведущий шкив, преодолевая сопротивление пружины, изменяет передаточное отношение и частоту вращения ведомого шкива,

Рис. 2. Передачи с клиновидным ремнем:
а — нормального сечения, б — шариком

Для передачи вращательного движения между удаленными друг от друга валами применяется помимо ременной цепная передача Как показано на рис. 3, а, она представляет собой замкнутую металлическую шарнирую цепь, охватывающую два зубчатых колеса (звездочки). Цепь в отличие от ремня не проскальзывает, кроме того, ее можно применять в передачах также при малом расстоянии между валами и в передачах со значительным передаточным числом.

Рис. 3. Цепные передачи:
а — общий вид, б — однорядная роликовая цепь, в — замок, г — пластинчатая цепь; а-межосевое расстояние, Р — шаг цепи

Цепные передачи передают мощность от долей лошадиных сил (велосипедные цепи) до тысячи лошадиных сил (многорядные цепи повышенной прочности).

Цепи работают с большими скоростями, доходящими до 30 м/с, и передаточным числом и — 15. Коэффициент полезного действия цепных передач составляет в отдельных случаях 0,98.

Цепная передача состоит из двух звездочек — ведущей и ведомой, сидящих на валах, и бесконечной цепи, надетой на эти звездочки.

Из различных видов цепей наибольшее распространение имеют Цепи однорядные и многорядные роликовые и пластинчатые.

Роликовые цепи допускают наибольшую скорость до м/с, пластинчатые — до 30 м/с.

Роликовая цепь состоит из шарнирно соединенных пластинок, между которыми помещаются ролики, свободно вращающиеся на втулке. Втулка, запрессованная в отверстия внутренних пластинок, может поворачиваться на валике. Расстояние между осями двух соседних валиков или, иначе, шаг цепи должен равняться шагу звездочки. Под шагом звездочки понимают длину дуги, описанной по верху ее зубьев и ограниченной вертикальными осями симметрии двух смежных зубьев.

Валики плотно запрессовываются в отверстиях наружных пластинок. На одном из звеньев цепи делают замок из двух валиков, соединительной пластинки, изогнутой пластинки и шплинтов для крепления пластинок. Чтобы снять или установить цепь, ее размыкают, для чего сначала разбирают замок.

Пластинчатая цепь состоит из нескольких рядов пластин с зубцами, соединенных между собой втулками и шарнирно укрепленных на общих валиках.

В цепных передачах сохраняется постоянным передаточное число: кроме того, они очень прочны, что позволяет передавать большие усилия. В связи с этим цепные передачи применяют, например, в таких грузоподъемных механизмах, как тали и лебедки. Цепи большой длины используются в эскалаторах метро, конвейерах.

Во фрикционных передачах вращательное движение передается от ведущего к ведомому валу посредством плотно прижатых друг к другу гладких колес (дисков) цилиндрической или конической формы. Фрикционная передача применяется в лебедках, винтовых прессах, станках и ряде других машин.

Рис. 4. Фрикционные передачи:
а — с цилиндрическими колесами, б — с коническими колесами

Рис. 5. Одинарный торцовый вариатор

Чтобы фрикционная передача работала без скольжения и таким образом обеспечивала необходимую величину силы трения (сцепления) Т, поверхность ведомого колеса покрывают кожей, резиной, прессованной бумагой, древесиной или другим материалом, который может создать надлежащее сцепление со стальным или чугунным ведущим колесом.

Читайте также:  Гибка оргстекла в домашних условиях

Во фрикционных передачах применяют цилиндрические колеса для передачи движения между валами, расположенными параллельно, а конические — между пересекающимися валами.

В оборудовании находят применение фрикционные передачи с регулируемым передаточным числом. Одна из простейших таких передач показана на рис. 5.

Для изменения передаточного числа они оснащены устройствами, перемещающими одно из колес (дисков) вдоль вала и в соответствующем месте его закрепляющими. Уменьшение таким устройством диаметра D ведомого колеса до рабочего диаметра D, обеспечивающее увеличение частоты вращения ведомого колеса. В результате уменьшается передаточное число По мере удаления ведущего колеса от оси ведомого передаточное число, наоборот, увеличивается. Такое плавное регулирование скорости называется беоступенчатым, а устройство, осуществляющее регулирование — ваумаюром скоростей.

Зубчатые передачи имеются почти во всех сборочных единицах промышленного оборудования. С их помощью изменяют по величине и направлению скорости движущихся частей станков, передают от одного вала к другому усилия и крутящие моменты, а также преобразуют их.

В зубчатой передаче движение передается с помощью пары зубчатых колес. В практике меньшее зубчатое колесо принято называть шестерней, а большее — колесом. Термин «зубчатое колесо» относится как к шестерне, так и к колесу.

В зависимости от взаимного расположения геометрических осей валов зубчатые передачи бывают: цилиндрические, конические и винтовые. Зубчатые колеса для промышленного оборудования изготовляют с прямыми, косыми и угловыми (шевронными) зубьями.

По профилю зубьев зубчатые передачи различают: эвольвентные, с зацеплением Новикова и циклоидальные. В машиностроении широко применяют эвольвентное зацепление. Принципиально новое зацепление М. А. Новикова возможно лишь в косых зубьях и благодаря высокой несущей способности является перспективным. Циклоидальное зацепление используется в приборах и часах.

Цилиндрические зубчатые колеса с прямым зубом служат в передачах с параллельно расположенными осями валов и монтируются на последних неподвижно или подвижно.

Косозубые колеса монтируют на валах только неподвижно. Работа косозубых колес сопровождается осевым давлением, а потому они пригодны для передачи лишь сравнительно небольших мощностей. Осевое давление можно устранить, соединив два косозубых колеса с одинаковыми, но направленными в разные стороны зубьями. Так получают шевронное колесо, которое монтируют, обращая вершину угла зубьев в сторону вращения колеса. На специальных станках шевронные колеса изготовляют целыми из одной заготовки.

Шевронные колеса отличаются большой прочностью, их применяют для передачи больших мощностей в условиях, когда зубчатое зацепление испытывает во время работы толчки и удары. Эти колеса также устанавливают на валах неподвижно.

Рис. 6. Зубчатые зацепления:
а — цилиндрическое с прямым зубом, б — то же, с косым зубом, е — с шевронными зубьями, г — коническое, д—колесо—рейка, е — червячное, ж —с круговым зубом

Конические зубчатые передачи различают по форме зубьев: прямозубые, косозубые и круговые.

На рис. 6, г показаны конические прямозубые, а на рис. 6, ж круговые зубчатые колеса. Их назначение — передача вращения между валами, оси которых пересекаются.

Конические зубчатые колеса с круговым зубом применяются в передачах, где требуется особая плавность и бесшумность движения.

На рис. 6, д изображены зубчатое колесо и рейка. В этой передаче вращательное движение колеса преобразуется в прямолинейное движение рейки.

Зубчатая передача с зацеплением Новикова. Эвольвентное зацепление является линейчатым, так как контакт зубьев практически происходит по узкой площадке, расположенной вдоль зуба, почему контактная прочность этого зацепления сравнительно невысока.

В зацеплении Новикова линия контакта зубьев обращается в точку и зубья касаются только в момент прохождения профилей через эту точку, а непрерывность передачи движения обеспечивается винтовой формой зубьев. Поэтому данное зацепление может быть только косозубым е углом наклона f = 10—30°. При взаимном перекатывании зубьев контактная площадка перемещается вдоль зуба о большой скоростью, что создает благоприятные условия для образования устойчивого масляного слоя между зубьями, благодаря чему трение в передаче уменьшается почти в два раза, соответственно повышается несущая способность зубьев.

Существенным недостатком рассмотренного зацепления является повышенная чувствительность к изменению межосевого расстояния и значительным колебаниям нагрузок.

Основные характеристики зубчатых колес. В каждом зубчатом колесе различают три окружности (делительную окружность, окружность выступов, окружность впадин) и, следовательно, три соответствующих им диаметра.

Делительная, или начальная, окружность делит зуб по высоте на две неравные части: верхнюю, называемую головкой зуба, и нижнюю, называемую ножкой зуба. Высоту головки зуба принято обозначать ha, высоту ножки— hf, а диаметр окружности — d.

Окружность выступов — это окружность, ограничивающая сверху профили зубьев колеса. Обозначают ее da.

Окружность впадин проходит по основанию впадин зубьев: диаметр этой окружности обозначают df.

Рис. 7. Схема движения контактной площадки и основные элементы зубчатого колеса:
а — эвольвентное зацепление, б — зацепление Новикова, в — основные злементы зубчатого колеса

Необходимо отметить, что в таблице не приведены характеристики широко применяемых корригированных зубчатых колес, у которых относительные размеры зуба и другие показатели иные, чем вытекающие из приведенных формул, а также колеса, в основе размеров элементов которых лежит двойной модуль.

Тихоходные зубчатые колеся изготовляют из чугуна или углеродистой стали, быстроходные — из легированной стали. После нарезания зубьев на зуборезных стенках зубчатые колеса подвергают термической обработке, чтобы увеличить их прочность и повысить стойкость против износа У колес из углеродистой стали поверхность зубьев улучшают химико-термическим способом — цементацией и потом закаливанием. Зубья быстроходных колес после термической обработки шлифуют или притирают. Применяется также поверхностная закалка токами высокой частоты.

Чтобы зацепление было плавным и бесшумным, одно из двух колес в зубчатых парах в отдельных случаях, когда это позволяет нагрузка, выполняют из текстолита, древеснослоистого пластика ДСП -Г или капрона.

Для облегчения зацепления зубчатых колес при включении посредством перемещения по валу, торцы зубьев со стороны включения закругляют.

Червячные передачи. Червячные передачи позволяют получить малые передаточные числа, что делает их применение целесообразным в случаях, когда требуются небольшие частоты вращения ведомого вала. Имеет существенное значение и то, что червячные пере-

Дачи занимают меньше места, чем зубчатые. Червячная передача состоит из червяка, насаживаемого на ведущий вал или изготовляемого заодно с ним, и червячного колеса, закрепляемого на ведомом валу. Червяк представляет собой винт с трапецеидальной резьбой Червячное колесо имеет вогнутые по длине винтовые зубья.

По числу зубьев различают червяки однозаходные, двухзаходные и т. д. Однозаходный червяк за один оборот поворачивает колесо на один зуб, двухзаходный червяк — на два и г. д.

Недостатком червячных передач являются большие потери передаваемой мощности на трение. Для уменьшения потерь червяк изготовляют из стали и его поверхность после закалки шлифуют, а червячное колесо изготовляют из бронзы. При таком сочетании материалов трение уменьшается, следовательно, меньше становятся потери мощности; кроме того, уменьшается износ детали.

Из бронзы в целях экономии обычно делают не все червячное колесо, а только обод, надеваемый затем на стальную ступицу.

Передачей называют техническое приспособление для передачи того или иного вида движения от одной части механизма к другой. Передача происходит от источника энергии к месту ее потребления или преобразования. Первые передаточные механизмы были разработаны в античном мире и использовались в системах орошения Древнего Египта, Междуречья и Китая. Средневековые механики значительно усовершенствовали устройства, передающие движение, и разработали множество новых видов, используя и в прялках и гончарном деле. Подлинный же расцвет начался в Новое время, с внедрением технологий производства и точной обработки стальных сплавов.

Виды передачи движения

В различных станках, бытовых приборах, транспортных средствах и других механизмах используют разнообразные виды передач.

Обычно различают следующие виды передачи:

  • вращательного движения;
  • прямолинейного или возвратно-поступательного;
  • движения по определенной траектории.

Самым широко применяемым типом механических передач являются вращательные.

Особенности зубчатого механизма

Такие механизмы предназначены для того, чтобы передавать вращение от одного зубчатого колеса к другому, используя зацепление зубцов. У них относительно малые потери на трение по сравнению с фрикционами, поскольку плотный прижим колесной пары друг к другу не нужен.

Читайте также:  Запуск 3 фазного двигателя без конденсаторов

Пара шестерен преобразует скорость вращения вала обратно пропорционально соотношению числа зубцов. Это соотношение называют передаточным числом. Так, колесо с пятью зубьями будет вращаться в 4 раза быстрее, чем состоящее с ним в зацеплении 20-зубое колесо. Крутящий момент в такой паре уменьшится также в 4 раза. Это свойство используют для создания редукторов, понижающих скорость вращения с возрастанием крутящего момента (или наоборот).

Если необходимо получить большое передаточное число, то одной пары шестерен может быть недостаточно: редуктор получится очень больших размеров. Тогда применяют несколько последовательных пар шестерен, каждую с относительно небольшим передаточным числом. Характерным примером такого вида является автомобильная коробка передач или механические часы.

Зубчатый механизм способен также изменять направление вращения приводного вала. Если оси лежат в одной плоскости — применяют конические шестерни, если в разных- то передачу червячного или планетарного вида.

Для реализации движение с определенным периодом на одной из шестерен оставляют один (или несколько) зубец. Тогда вторичный вал будет перемещаться на заданный угол только каждый полный оборот ведущего вала.

Если развернуть одну из шестерен на плоскость – получится зубчатая рейка. Такая пара может преобразовывать вращательное движение в прямолинейное.

Параметры зубчатой передачи

Для того чтобы шестерни входили в зацепление и эффективно передавали движение, необходимо, чтобы зубья точно совпадали между собой по профилю. Регламентированы основные параметры, используемые при расчете:

  • Диаметр начальной окружности.
  • Шаг зацепления — расстояние между соседними зубцами, определенное вдоль линии начальной окружности.
  • Модуль. – Отношение шага к константе π. Шестерни с равным модулем всегда входят в зацепление, независимо от количества зубцов. Стандартом предписывается допустимый ряд значение модулей. Через модуль выражаются все основные параметры шестерни.
  • Высота зуба.

Важными параметрами также являются высота головки и основания зуба, диаметр окружности выступов, угол контура и другие.

Преимущества

Передачи зубчатого вида обладают рядом очевидных достоинств. Это:

  • преобразование параметров движения (число оборотов и крутящий момент) в широких пределах;
  • высокая отказоустойчивость и ресурс работы;
  • компактность;
  • малые потери и большой коэффициент полезного действия;
  • небольшие нагрузки на оси;
  • стабильность передаточного числа;
  • несложное обслуживание и ремонт.

Недостатки

Зубчатым механизмам свойственны и определенные минусы:

  • При изготовлении и сборке требуется высокая точность и специальная обработка поверхностей.
  • Неизбежный шум и вибрация, особенно при высоких оборотах или больших усилиях
  • Жесткость конструкции приводит к поломкам при стопорении ведомого вала.

При выборе вида передачи конструктор сопоставляет преимущества и недостатки для каждого конкретного случая.

Механические передачи

Механические передачи служит для того, чтобы передать вращение от ведущего вала к ведомому, от места генерации механической энергии (обычно — двигатель того или иного типа) к месту ее потребления или преобразования.

Как правило, двигатели вращают свой вал с ограниченным пределом изменения числа оборотов и крутящего момента. Потребителям же требуются более широкие диапазоны.

По методу передачи механической энергии среди передач различают следующие виды:

Зубчатые передающие механизмы, в свою очередь, подразделяются на такие виды, как:

  • цилиндрические;
  • конические;
  • профиль Новикова.

По соотношению скорости вращения ведущего и ведомого валов различают редукторы (снижающие обороты) и мультипликаторы (увеличивающие обороты). Современная механическая коробка передач для автомобиля объединяет в себе оба вида, являясь одновременно и редуктором, и мультипликатором.

Функции механических передач

Главная функция механических передач — это предать кинетическую энергию от ее источника к потребителям, рабочим органам. Помимо главной, передаточные механизмы выполняют и дополнительные функции:

  • Изменение числа оборотов и крутящего момента. При постоянном количестве движения изменения этих величин обратно пропорциональны. Для ступенчатого изменения применяют сменные зубчатые пары, для плавного подходят ременные или торсионные вариаторы.
  • Изменение направления вращения. Включает как обычный реверс, так и изменение направления оси вращения с помощью конических, планетарных или карданных механизмов.
  • Преобразование видов движения. Вращательного в прямолинейное, непрерывного в циклическое.
  • Раздача крутящего момента между несколькими потребителями.

Механические» передачи выполняют и другие вспомогательные функции.

Классификация механических передач

Машиностроителями принято несколько классификаций в зависимости от классифицирующего фактора.

По принципу действия различают следующие виды механических передач:

  • зацеплением;
  • трением качения;
  • гибкими звеньями.

По направлению изменения числа оборотов выделяют редукторы (снижение) и мультипликаторы (повышение). Каждый из них соответственно изменяет и крутящий момент (в обратную сторону).

По числу потребителей передаваемой энергии вращения вид может быть:

  • однопотоковый;
  • многопотоковый.

По числу этапов преобразования – одноступенчатые и многоступенчатые.

По признаку преобразования видов движения выделяют такие типы механических передач, как

  • Вращательно-поступательные. Червячные, реечные и винтовые.
  • Вращательно-качательные. Рычажные пары.
  • Поступательно-вращательные. Кривошипно-шатунные широко применяются в двигателях внутреннего сгорания и паровых машинах.

Для обеспечения движения по сложным заданным траекториям используют системы рычагов, кулачков и клапанов.

Основные показатели для выбора механических передач

Выбор типа передачи — сложная конструкторская задача. Нужно подобрать вид и спроектировать механизм, наиболее полно удовлетворяющий техническим требованиям, сформулированным для данного узла.

При выборе конструктор сопоставляет следующие основные факторы:

  • опыт предшествующих аналогичных конструкций;
  • мощность и момент на валу ;
  • число оборотов на входе и на выходе;
  • требуемый К.П.Д.;
  • массогабаритные характеристики;
  • доступность регулировок;
  • плановый эксплуатационный ресурс;
  • себестоимость производства;
  • стоимость обслуживания.

При высоких передаваемых мощностях обычно выбирают многопоточный зубчатый вид. При необходимости регулировки числа оборотов в широком диапазоне разумно будет выбрать клиноременной вариатор. Конечное решение остается за конструктором.

Цилиндрические передачи

Механизмы такого вида выполняют с внутренним или с внешним зацеплением. Если зубья расположены под углом к продольной оси, шестерню называют косозубой. По мере увеличения угла наклона зубцов прочность пары повышается. Зацепление косозубого вида также отличается лучшей износостойкостью, плавностью хода и низким уровнем шума и вибраций.

Недостатком этого типа является возникновение паразитной силы, действующей вдоль оси колеса. Это создает лишнюю нагрузку на опорные подшипники.

Коническая передача

Если необходимо изменить направление вращения, а оси валов лежат в одной плоскости, применяют конический тип передачи. Наиболее распространенный угол изменения – 90°.

Такой тип механизма более сложен в изготовлении и монтаже и, также как и косозубый, требует укрепления опорных конструкций.

Конический механизм может передать до 80% мощности по сравнению с цилиндрическим.

Реечная и ременная зубчатая передача

Реечная передача преобразует вращательное движение в поступательное. Одно из зубчатых колес пары как бы развернуто в линию и представляет собой зубчатую рейку. Такой способ используется в рулевом управлений автомобиля, в других исполнительных механизмах.

Ременная передача была изобретена в доисторические времена и с тех пор заметно видоизменилась и усовершенствовалась.

Она состоит из двух закрепленных на входном и выходном валу колес-шкивов, охваченных кольцевым приводным ремнем. Вращение передается за счет сил трения, возникающих на шкивах.

Плоские и круглые ремни используются при небольших нагрузках. Широкое распространение получил ремень в форме клина, шкив при этом выполняется со щечками, и зацепление осуществляется одной нижней и двумя боковыми поверхностями ремня.

Ремни также снабжаются зубчатыми фрагментами. Поликлиновые передачи широко применяются в современных автомобильных и мотоциклетных вариаторах. Они позволяют передавать значительный крутящий момент и плавно регулировать скорость вращения ведомого вала.

Достоинства и недостатки ременных передач

  • передача вращения на большие дистанции (до 20 метров);
  • низкий уровень шума и вибраций;
  • демпфирование динамических нагрузок упругим материалом ремня;
  • простое устройство и эксплуатация, смазка ремня не требуется).
  • большие размеры (при равной мощности шестерня в 5-6 раз меньше шкива);
  • переменное передаточное число из-за проскальзывания;
  • малая долговечность по сравнению с зубчатыми колесами.

Чтобы обеспечить тяговую способность, ремень приходится подвергать большому предварительному натяжению. Это ускоряет износ подшипников и валов шкивов.

Применение

Из всех типов передач наиболее широко применяются зубчатые. Практически любой механизм, бытовой прибор, станок, механические часы, транспортное средство включает в себя зубчатые пары.

В последнее время, с прогрессом электротехники, разработкой новых материалов и отходом двигателей внутреннего сгорания на второй план, использование зубчатых механизмов приобрело тенденцию к сокращению.

Читайте также:  Лучшие насосные станции для дома и дачи

Все чаще вместо редуктора используют электронную схему регулировки момента и числа оборотов электродвигателя. В электромобиле из нескольких тысяч движущихся частей, 30% из которых составляли разного вида шестерни, осталось несколько сотен.

Тяговые электродвигатели размещены непосредственно в колесе, необходимость в сложной трансмиссии отпадает.

Похожие тенденции намечаются и в бытовой технике.

Свои позиции зубчатые редукторы и трансмиссии сохраняют там, где требуется передача очень больших мощностей и крутящих моментов. Это промышленные установки, горная техника, некоторые виды транспортных систем.

Обслуживание

Своевременное обслуживание любой техники в соответствии с рекомендациями ее производителя обеспечит ее нормальное функционирование, паспортную производительность и выработку планового ресурса.

Обслуживание разбивается на несколько видов

  • текущее обслуживание;
  • диагностика;
  • планово-предупредительный ремонт;
  • внеплановый ремонт;
  • аварийный ремонт.

При условии проведения текущего обслуживания и планово-предупредительных ремонтов в соответствии с графиками удается значительно снизить риски выхода оборудования из строя.

Диагностика проводится с заданной периодичностью и призвана выявить негативные изменения в работе оборудования на ранней стадии и минимизировать потери времени и средств на внеплановые ремонты.

Обслуживание зубчатых передач заключается в их своевременной смазке.

Для ременных необходимо периодическое восстановление силы натяжения ремня.

Диагностика проводится как методом визуального осмотра, таки измерением температуры, уровня шума и вибрации, ультразвуковым и рентгеновским просвечиванием механизма без его разборки.

Стандарты

Основные параметры различных видов передач нормируются соответствующими ГОСТами:

  • Зубчатые цилиндрические: 16531-83.
  • Червячные 2144-76.
  • Эвольвентные 19274-73.

Дополнительные параметры, методы расчета и особенности эксплуатации описаны в других государственных стандартах.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Эти передачи служат для преобразования вращения в прямолинейное перемещение исполнительного органа станка. Применяют реечные передачи, винтовые пары (скольжения и качения), кулисные, кулачковые и др.

Реечная передача служит для преобразования вращательного движения реечного колеса (рис. 10.2, а) в поступательное перемещение рейки и наоборот. Реечная передача может быть выполнена с прямозубым и косозубым зацеплением колеса с рейкой. За один

оборот прямозубого колеса с числом зубьев z рейка, шаг которой Р =»» кт, переместится на Н — Pz- nmz, а за п, мин-1, зубчатого колеса — на L =»» nrnzn.

Рис. 10.2. Способы преобразования вращательного движения в прямолинейное поступательное:

а — реечной передачей; 6 — червячно-реечной передачей; в — гидростатической передачей червяк — рейка; г, д — винтовой парой скольжения; е — шарико-винтовой передачей; 7 — червяк; 2 — гидрораспределитель; 3 — рейка; 4,5 — насосы; 6 — суппорт; 7 — контргайки; 8, 10 — гайки; 9 — корпус; 7 7 — ходовой винт; 72 — тела качения (шарики); 13 — канал возврата; М — электродвигатель

Реечные передачи используют в металлорежущих станках, например в токарных, для осуществления движения продольной подачи суппорта с резцом относительно обрабатываемой заготовки. В более крупных станках, таких как продольно-строгальные, необходимо передавать большие усилия. Там применяют червячно-реечную передачу (рис. 10.2, б).

В приводах подачи тяжелых станков используют гидростатические червячно-реечные передачи, в которых для уменьшения трения в паре червяк—рейка между профилями их зубьев подается под давлением тонкий слой масла. На рис. 10.2, в представлено устройство гидростатической червячно-реечной передачи многоцелевого станка. С помощью гидрораспределителя 2 в каналы червяка 7 от насосов 4 под давлением подается масло. Оно создает масляный слой между зубьями червяка и рейки 3 с зубьями, армированными пластмассой. В осевые зазоры соединения масло нагнетается насосами 5. Все насосы имеют один общий привод от электродвигателя М.

Винтовая передача применяется тогда, когда нужно получить движение с малыми скоростями. Вращение сообщается винту; гайка и связанные с нею стол или салазки перемещаются прямолинейно-поступательно.

В передачах винт—гайка скольжения в станках с ручным управлением используют треугольные, прямоугольные и трапецеидальные профили резьб. Треугольную резьбу применяют для точных перемещений в микрометрических винтах, в винтах делительных и измерительных машин. Прямоугольную и трапецеидальную резьбу используют для ходовых винтов, при этом гайки ходовых винтов выполняют цельными и разъемными.

Прецизионные металлорежущие станки оснащают безлюфтовой передачей винт—гайка скольжения (рис. 10.2, д). Это достигается применением сдвоенных гаек, расположенных в одном корпусе 9. Гайки 8 и 10 смещаются одна относительно другой в осевом направлении поворотом вокруг ходового винта 77 в противоположных направлениях, после чего их положение фиксируется контргайками 7. При вращении ходового винта в одном направлении суппорт 6 будет перемещаться от левой гайки 70; если же ходовой винт изменит направление вращения, то правая гайка 8 сразу передаст движение суппорту в противоположном направлении. В такой конструкции люфт не выбирается, так как гайки работают каждая на свое направление. На увеличенном виде Л показано, как соприкасаются профили левой и правой гаек с профилями резьбы ходового винта.

Недостатками передачи винт-гайка скольжения являются большие потери на трение, низкий КПД, невозможность применения при быстрых перемещениях. Скорость скольжения профиля резьбы винта относительно профиля гайки в 10—40 раз превышает скорость осевого перемещения узла, жестко скрепленного с гайкой.

В станках с ЧПУ в приводах подач передача винт—гайка качения (ВГК) представляет собой шариковую винтовую пару (ШВП) с полукруглым профилем резьбы. При использовании ШВП для точных перемещений недопустим осевой зазор. В этом случае ВГК выполняют по аналогии с передачей винт — гайка скольжения (см. рис. 10.2, д). В едином корпусе 9 (рис. 10.2, е ) размещают две гайки 8 и 10, смещенные одна относительно другой по винтовой линии. Это создает безлюфтовую передачу. Путем затягивания резьбовых соединений создаются предварительные осевые усилия. Теперь тела качения 12 вместо точечного контакта с дорожкой качения имеют контакт по небольшой поверхности, что повышает осевую жесткость ШВП.

В большинстве конструкций шарики в гайке перемещаются по замкнутой траектории. Каналом возврата служит специальная вставка 13, соединяющая два соседних витка гайки, которая заставляет циркулировать шарики только в пределах одного шага ходового винта 11.

Преимуществами ШВП являются: высокая жесткость и отсутствие зазора в соединении, что значительно снижает вибрации, уменьшает изнашивание и поломки режущего инструмента, повышает точность и чистоту обработки; возможность передачи больших усилий; низкие потери на трение, КПД этих механизмов составляет 0,9. 0,95; малые крутящие моменты на ходовом винте при холостом ходе; весьма малое трение покоя, что способствует обеспечению устойчивости движения; высокая точность (за счет предварительного натяга); высокая чувствительность к малым перемещениям; длительное сохранение точности, малое тепловыделение, снижающее температурные деформации винта и повышающее точность обработки.

К недостаткам относятся отсутствие самоторможения, сложность изготовления, высокая стоимость, необходимость надежной защиты от стружки.

Кривошипно-шатунные механизмы предназначены для преобразования вращательного движения в поступательное, обеспечивая перемещение по определенному закону. Скорость рабочего органа не остается постоянной во время его движения. В этом есть свое преимущество: при изменении направления скорости не возникает ударов и больших нагрузок, так как к моменту реверсирования движения скорость рабочего органа постепенно падает, приближаясь к нулю. Кроме того, возвратно-поступательное движение в кривошипно-шатунных механизмах осуществляется без применения дополнительных реверсивных механизмов.

Кривошипно-шатунные механизмы имеют широкое распространение в станках с прямолинейным движением резания, например в зубодолбежных.

На рис. 10.3 представлены различные схемы работы кривошипно-шатунного механизма. Центральный кривошипно-шатунный механизм (схемы а, в и г) в зависимости от соотношения X =»» г/1 может иметь различные применения. При / > г (схема а) длина хода ползуна равна 2г и чем меньше X, тем в лучших условиях будет работать механизм и тем выше его КПД. При I — г (схема в) кривошипно-шатунный механизм имеет наибольший ход, равный 4г. Однако при прохождении мертвых точек в середине хода рекомендуется иметь специальные устройства, так как использование сил инерции звеньев здесь не является надежным. Поэтому механизм с X =»» 1 на практике применяется редко. При I

>

Отправить ответ

  Подписаться  
Уведомление о
Adblock
detector