Когда резец токарного станка снимает большую стружку

Снятие пробной стружки производится в следующей последовательности:

а) включить вращение шпинделя;

б) маховиками продольной и поперечной подачи плавно подвести резец к обрабатываемой заготовке и слегка коснуться ее, после чего маховиком продольной подачи отвести резец в сторону задней бабки на расстояние 5–10 мм от торца обрабатываемой детали;

в) пользуясь лимбом поперечной подачи, установить резец на глубину резания t = 0,5 мм и снять первую пробную стружку при помощи ручной продольной подачи на длине 40 – 60 мм, затем отвести резец и выключить вращение шпинделя (при отсчете по лимбу поперечной подачи необходимо учитывать, что резец перемещается по радиусу к обрабатываемой детали, т. е. при снятии стружки глубиной 0,5 мм деталь уменьшится по диаметру на 1 мм);

г) после остановки шпинделя замерить штангенциркулем диаметр обработанной поверхности для сравнения с диаметром до обработки;

д) повторить эти операции 2 – 3 раза;

е) снять пробную стружку на t = 0,5 мм согласно пп. а, б, в, г, используя механическую продольную подачу;

ж) установить рукоятку перебора в нейтральном положении;

− выключить вращение шпинделя;

− отключить станок от сети;

− извлечь заготовку из патрона, снять проходной резец;

− убрать станок, сдать инструмент.

Задание № 3. Определение режимов резания, основного времени, сил и мощности резания

1. Скорость главного движения резания при точении v, м/мин:

v =

2. Частота вращения шпинделя токарного станка n, минˉ¹:

n =

3. Скорость движения подачи резца vs, мм/мин:

4. Глубина резания при предварительном обтачивании t, мм:

t =

5. При окончательном обтачивании t, мм:

t =

6. Основное время при точении То, мин:

Tо = ,

где i – число рабочих ходов; L – длина рабочего хода, мм:

где ∆ = 1…3 мм перебег резца; врезание резца, мм:

7. Главная составляющая силы резания Pz, Н:

8. Радиальная составляющая силы резания Py, Н:

9. Осевая составляющая силы резания Px , Н:

Nр =

11. Мощность на шпинделе металлорежущего станка Nшп, кВт:

где NД – мощность электродвигателя, η – коэффициент полезного действия, Cp – и Kp – коэффициенты сил резания, φ – главный угол в плане, – длина детали, Sо – подача на оборот, D, D и d – диаметры обрабатываемых и обработанных поверхностей деталей.

Обработка металла на токарных станках при определенных условиях может сопровождаться возникающими вибрациями. При этом падает качество изготовления, приходит в негодность режущий инструмент, узлы станка подвергаются интенсивному износу.

Особенно актуальна эта проблема для современного оборудования, работающего с большой производительностью и на высоких скоростях резания.

Основные сведения

Рассматривая условия возникновения вибраций, нужно учитывать жесткость всей обрабатывающей системы. А это: сам токарный станок, фундамент под станком, приспособления для различных условий точения, обрабатывающий инструмент, сама деталь и технология резания (СПИД-система).

При работе под нагрузкой происходит отклонение всех элементов системы от центральной оси вращения ненагруженного станка. Чем выше жесткость узлов станка и обрабатываемой детали, тем меньше величина их отклонений и тем лучше качество обработки: форма детали и шероховатость максимально приближены к заданным значениям. Жесткость системы также ограничивает максимальную массу заготовки

При недостаточной жесткости возникают вибрации, станок начинает «дробить», что приводит к понижению качества обработки. При этом, не всегда справедливо, что чем больше усилие резания, тем выше погрешность обработки. Вибрация может появляться и из-за сильного занижения рекомендованных технологией режимов резания, когда режущая кромка инструмента выходит за расчетные режимы и резание металла не происходит

На жесткость всей системы влияют временные факторы. В процессе обработки уменьшается сечение обрабатываемой детали, что приводит к снижению ее прочностных характеристик. Заготовка подвергается большему отклонению от оси вращения, при этом вибрации усиливаются.

Причины возникновения вибраций

  • Колебания, вызванные работой соседнего оборудования. Эти нежелательные возмущения передаются через грунт, стенные и потолочные перекрытия. Устранение таких явлений заключается в усилении фундаментов, отрыва фундамента станка от общего фундамента цеха при помощи антивибрационных материалов (например песка), установке амортизационных прокладок.
  • Дисбаланс различных частей токарного станка. Устраняется балансировкой или заменой изношенных вращающихся частей станка. Сбалансированность заготовки достигается установкой дополнительных грузов.
  • Технологические отклонения при изготовлении зубчатых передач оборудования. При этом возникают возмущающие систему механические силы, передающиеся на силовые элементы станка. В ременных передачах возникновению вибраций способствуют некачественные сшивки.
  • Прерывистый характер резания. Частое чередование режимов обработки приводит к толчкам и вибрациям. Если такая работа станка обуславливается технологическим режимом, то для устранения нежелательных явлений необходимо преднамеренное увеличение прочности детали.
  • Собственные колебания при обработке. Вполне сбалансированная обрабатывающая система может без видимых на то причин вызывать сильные вибрации. Это связано с явлением резонанса. Собственная частота колебаний работающего станка совпадает с частотой колебаний окружающего оборудования, самого здания. Для устранения такого явления нужно изменить режим резания и возможно технологию.
Читайте также:  Схема подключения квартирного звонка

Вибрация, измеряемая частотой колебаний в секунду, характеризуется жесткостью системы. При увеличении этого параметра, частота колебаний увеличивается, а амплитуда уменьшается. Вибрация становится менее заметной.

Факторы, влияющие на интенсивность вибраций

  • При увеличении скорости резания интенсивность вибраций в первый момент возрастает (примерный график — на рисунке справа). По достижении скорости резания 80-150 м/мин вибрация начинает затихать. Конкретное значение скорости резания, при которой вибрация уменьшает свои значения, зависит от совокупности параметров режущей системы.
  • Увеличение ширины среза усиливает амплитуду колебаний (вибраций).
  • Увеличение подачи инструмента или толщины среза вызывает некоторое уменьшение вибраций.
  • Применение резцов с небольшими углами, позволяющими производить большие подачи на высоких скоростях, приводит к увеличению амплитуды нежелательных колебаний.
  • Уменьшая угол резания, можно добиться снижения интенсивности колебаний.

Методы уменьшения вибраций

При уменьшении вибраций происходит повышение точности изготовления деталей. Анализ технологического процесса позволяет определить погрешности обработки. На основе этих данных определяются методы устранения нежелательных процессов в обрабатывающей системе:

  • Мероприятия по повышению жесткости:
  1. Уменьшение величины выхода пиноли задней бабки.
  2. Уменьшение вылета резца.
  3. Затягивание клиньев суппорта и зажим каретки.
  4. Загрузка поперечного суппорта.
  • Увеличение подачи, скорости резания.
  • Выбор наиболее подходящего резца и его правильной заточки.
  • Обработка металла резцами с противовибрационной фаской. Принцип действия основан на трении фаски о поверхность детали, приводящем к уменьшению колебаний. Этот способ возможен при определенных сочетаниях размеров детали (длины и диаметра), формы резца, технологических режимов обработки.
  • Балансировка дополнительных приспособлений с установленной деталью.
  • Балансировка трехкулачковых патронов с планшайбой.
  • Установка противовесов при точении несимметричных деталей.

Может возникнуть ситуация, когда ни одна из описанных выше мер не приводит к уменьшению вибраций. В этом случае устанавливаются виброгасители. Во фрикционных виброгасителях вибрацию гасят поджатые пружинами кулачки. В гидравлических виброгасителях все нежелательные колебания поглощаются рабочей жидкостью.

Для снижения вибраций при обработке длинномерных деталей применяются более простые способы. При обточке тонкостенной трубы ее заполняют песком или опилками. На длинный вал, зажатый в центрах, навешивают груз, принимающий на себя все колебания.

Большая роль в повышении качества выпуска продукции отводится токарю. Он правильно должен выбрать режим работы исходя из свойств заготовки (ее жесткости), характеристик станка (мощность электропривода), параметров заточки рабочего инструмента.

Получить консультацию

по инструменту, методам обработки, режимам или подобрать необходимое оборудование можно связавшись с нашими менеджерами или отделом САПР

Также Вы можете подобрать и приобрести режущий инструмент и оснастку к станку, производства Тайваня, Израиля

Отправляя заявку, вы соглашаетесь с политикой конфиденциальности

К наиболее распространенным методикам изготовления деталей с заданными геометрическими параметрами относится токарная обработка металла. Суть данной методики, позволяющей также получать поверхность с требуемой шероховатостью, заключается в том, что с заготовки убирают лишний слой металла.

Процесс токарной обработки металла

Принципы токарной обработки

Технология токарных работ по металлу предполагает использование специальных станков и режущего инструмента (резцы, сверла, развертки и др.), посредством которого с детали снимается слой металла требуемой величины. Токарная обработка выполняется за счет сочетания двух движений: главного (вращение заготовки, закрепленной в патроне или планшайбе) и движения подачи, совершаемого инструментом при обработке деталей до заданных параметров их размера, формы и качества поверхности.

Читайте также:  Сталь 40х обработка резанием

За счет того, что существует множество приемов совмещения этих движений, на токарном оборудовании работают с деталями различной конфигурации, а также осуществляют целый перечень других технологических операций, к которым относятся:

  • нарезание резьбы различного типа;
  • сверление отверстий, их растачивание, развертывание, зенкерование;
  • отрезание части заготовки;
  • вытачивание на поверхности изделия канавок различной конфигурации.

Благодаря такой широкой функциональности токарного оборудования на нем можно сделать очень многое. Например, с его помощью выполняют обработку таких изделий, как:

  • гайки;
  • валы различных конфигураций;
  • втулки;
  • шкивы;
  • кольца;
  • муфты;
  • зубчатые колеса.

Естественно, что токарная обработка предполагает получение готового изделия, которое соответствует определенным стандартам качества. Под качеством в данном случае подразумевается соблюдение требований к геометрическим размерам и форме деталей, а также степени шероховатости поверхностей и точности их взаимного расположения.

Для обеспечения контроля над качеством обработки на токарных станках применяют измерительные инструменты: на предприятиях, выпускающих свою продукцию крупными сериями, – предельные калибры; для условий единичного и мелкосерийного производства – штангенциркули, микрометры, нутрометры и другие измерительные устройства.

Измерительные инструменты, часто используемые в токарном деле

Первое, что рассматривают при обучении токарному делу, – это технология обработки металлов и принцип, по которому она осуществляется. Заключается этот принцип в том, что инструмент, врезаясь своей режущей кромкой в поверхность изделия, зажимает его. Чтобы снять слой металла, соответствующий величине такого врезания, инструменту надо преодолеть силы сцепления в металле обрабатываемой детали. В результате такого взаимодействия снимаемый слой металла формируется в стружку. Выделяют следующие разновидности металлической стружки.

Такая стружка формируется тогда, когда на высоких скоростях обрабатываются заготовки, выполненные из мягкой стали, меди, олова, свинца и их сплавов, полимерных материалов.

Образование такой стружки происходит, когда на небольшой скорости обрабатываются заготовки из маловязких и твердых материалов.

Стружка такого вида получается при обработке заготовок из материала, отличающегося невысокой пластичностью.

Формирование такой стружки свойственно для среднескоростной обработки заготовок из стали средней твердости, деталей из алюминиевых сплавов.

Режущий инструмент токарного станка

Эффективность, которой отличается работа на токарном станке, определяется рядом параметров: глубиной и скоростью резания, величиной продольной подачи. Чтобы обработка детали была высококачественной, необходимо организовать следующие условия:

  • высокую скорость вращения заготовки, фиксируемой в патроне или планшайбе;
  • устойчивость инструмента и достаточную степень его воздействия на деталь;
  • максимально возможный слой металла, убираемый за проход инструмента;
  • высокую устойчивость всех узлов станка и поддержание их в рабочем состоянии.

Скорость резки выбирается на основе характеристик материала, из которого сделана заготовка, типа и качества применяемого резца. В соответствии с выбранной скоростью резки выбирается частота вращения шпинделя станка, оснащенного токарным патроном или планшайбой.

При помощи различных типов резцов можно выполнять черновые или чистовые виды токарных работ, а на выбор инструмента основное влияние оказывает характер обработки. Изменяя геометрические параметры режущей части инструмента, можно регулировать величину снимаемого слоя металла. Выделяют правые резцы, которые в процессе обработки детали передвигаются от задней бабки к передней, и левые, движущиеся, соответственно, в обратном направлении.

Основные типы токарных резцов

По форме и расположению лезвия резцы классифицируются следующим образом:

  • инструменты с оттянутой рабочей частью, ширина которой меньше ширины их крепежной части;
  • прямые;
  • отогнутые.

Различаются резцы и по цели применения:

  • подрезные (обработка поверхностей, перпендикулярных оси вращения);
  • проходные (точение плоских торцовых поверхностей);
  • канавочные (формирование канавок);
  • фасонные (получение детали с определенным профилем);
  • расточные (расточка отверстий в заготовке);
  • резьбовые (нарезание резьбы любых видов);
  • отрезные (отрезание детали заданной длины).

Качество, точность и производительность обработки, выполняемой на токарном станке, зависят не только от правильного выбора инструмента, но и от его геометрических параметров. Именно поэтому на уроках в специальных учебных заведениях, где обучаются будущие специалисты токарного дела, очень большое внимание уделяется именно вопросам геометрии режущего инструмента.

Читайте также:  Каркас калитки из профильной трубы

Углы токарного резца

Основными геометрическими параметрами любого резца являются углы между его режущими кромками и направлением, в котором осуществляется подача. Такие углы режущего инструмента называют углами в плане. Среди них различают:

  • главный угол – φ, измеряемый между главной режущей кромкой инструмента и направлением подачи;
  • вспомогательный – φ1, расположенный, соответственно, между вспомогательной кромкой и направлением подачи;
  • угол при вершине резца – ε.

Угол при вершине зависит только от того, как заточен инструмент, а вспомогательные углы можно регулировать еще и его установкой. При увеличении главного угла уменьшается угол при вершине, при этом уменьшается и часть режущей кромки, участвующей в обработке, соответственно, стойкость инструмента тоже становится меньше. Чем меньше значение этого угла, тем большая часть режущей кромки участвует как в обработке, так и в отводе тепла от зоны резания. Такие резцы являются более стойкими.

Практика показывает, что для токарной обработки не слишком жестких заготовок небольшого диаметра оптимальным является главный угол, величина которого находится в интервале 60–90 градусов. Если обрабатывать необходимо заготовку большого диаметра, то главный угол необходимо выбирать в интервале 30–45 градусов. От величины вспомогательного угла зависит прочность вершины резца, поэтому его не делают большим (как правило, он выбирается из интервала 10–30 градусов).

Особое внимание на уроках по токарному делу уделяется и тому, как правильно выбирать тип резца в зависимости от вида обработки. Так, существуют определенные правила, по которым обработку поверхностей того или иного типа выполняют с помощью резца определенной категории.

  • Обычные прямые и отогнутые резцы необходимы для обработки наружных поверхностей детали.
  • Упорный проходной инструмент потребуется для торцевой и цилиндрической поверхностей.
  • Отрезной резец выбирают для протачивания канавок и обрезки заготовки.
  • Расточные резцы применяются для обработки отверстий, просверленных ранее.

Отдельную категорию токарного инструмента составляют резцы, с помощью которых можно обрабатывать фасонные поверхности с длиной образующей линии до 40 мм. Такие резцы подразделяются на несколько основных типов:

  • по конструктивным особенностям: стержневые, круглые и призматические;
  • по направлению, в котором осуществляется обработка изделия: радиальные и тангенциальные.

Токарно-винторезный станок 1В625МП

Виды оборудования для токарной обработки

Из всех типов оборудования для токарной обработки наибольшее распространение и на крупных, и на мелких предприятиях получил токарно-винторезный станок. Причиной такой популярности является многофункциональность этого устройства, благодаря которой его с полным основанием можно назвать универсальным.

Перечислим основные элементы конструкции такого станка:

  • две бабки – передняя и задняя (в передней бабке размещают коробку скоростей станка; шпиндель с токарным патроном (или планшайбой), на задней бабке размещены продольные салазки и пиноль оборудования);
  • суппорт, в конструкции которого различают верхние и нижние салазки, поворотную плиту и резцедержатель;
  • несущий элемент оборудования – станина, установленная на две тумбы, в которых размещают электродвигатели.
  • коробка подач.

Токарный станок с ЧПУ

Все большее распространение получают станки, управление которыми осуществляется при помощи специальных компьютерных программ, – станки с ЧПУ. Конструкция таких станков отличается от обычной только тем, что в ней присутствует специальный блок управления.

В отдельные категории выделяют следующие виды станков токарной группы:

  • токарно-револьверное оборудование, применяемое для обработки деталей сложной конфигурации;
  • токарно-карусельные станки, среди которых различают одно- и двухстоечные;
  • многорезцовое полуавтоматическое оборудование, которое можно встретить на предприятиях, выпускающих свою продукцию крупными сериями;
  • обрабатывающие комплексы, на которых можно выполнять как токарные, так и фрезерные операции.

Без токарной обработки сегодня крайне сложно представить многие производственные отрасли. Поэтому данный вид работы с металлом продолжает развиваться, несмотря на и без того высокий уровень, позволяющий обеспечить высочайшее качество и скорость обработки.


Отправить ответ

  Подписаться  
Уведомление о
Adblock
detector