Операция термической тепловой обработки

Термической (или тепловой) обработкой называется совокупность операций нагрева, выдержки и охлаждения твёрдых металлических сплавов с целью получения заданных свойств за счёт изменения внутреннего строения и структуры. Тепловая обработка используется либо в качестве промежуточной операции для улучшения обрабатываемости давлением, резанием, либо как окончательная операция технологического процесса, обеспечивающая заданный уровень свойств изделия.

Общая длительность нагрева металла при тепловой обработке складывается из времени собственного нагрева до заданной температуры и времени выдержки при этой температуре. Время нагрева зависит от типа печи, размеров изделий, их укладки в печи; время выдержки зависит от скорости протекания фазовых превращений.

Нагрев может сопровождаться взаимодействием поверхности металла с газовой средой и приводить к обезуглероживанию поверхностного слоя и образованию окалины. Обезуглероживание приводит к тому, что поверхность изделий становится менее прочной и теряет твёрдость.

При нагреве и охлаждении стали происходят фазовые превращения, которые характеризуются температурными критическими точками. Принято обозначать критические точки стали буквой А. Критические точки А1 лежат на линии PSK (727 °С) диаграммы железо-углерод и соответствуют превращению перлита в аустенит. Критические точки А2 находятся на линии МО (768 °С), характеризующей магнитное превращение феррита. A3 соответствует линиям GS и SE, на которых соответственно завершается превращение феррита и цементита в аустенит при нагреве.

Для обозначения критических точек при нагреве и охлаждении вводят дополнительные индексы: букву «с» в случае нагрева и «r» в случае охлаждения, например Ас1, Ac3, Ar1, Ar3.

Содержание

Виды термической обработки [ править | править код ]

Среди основных видов термической обработки следует отметить:

  • Отжиг
  • Отжиг 1 рода (гомогенизация, рекристаллизация, снятие напряжений). Целью является получение равновесной структуры. Такой отжиг не связан с превращениями в твердом состоянии (если они и происходят, то это — побочное явление).
  • Отжиг 2 рода связан с превращениями в твердом состоянии. К отжигу 2 рода относятся: полный отжиг, неполный отжиг, нормализация, изотермический отжиг, патентирование, сфероидизирующий отжиг.
  • Закалку проводят с повышенной скоростью охлаждения с целью получения неравновесных структур. Критическая скорость охлаждения, необходимая для закалки, зависит от химического состава сплава. Закалка может сопровождаться полиморфным превращением, при этом из исходной высокотемпературной фазы образуется новая неравновесная фаза (например, превращение аустенита в мартенсит при закалке стали). Существует также закалка без полиморфного превращения, в процессе которой фиксируется высокотемпературная метастабильная фаза (например, при закалке бериллиевой бронзы происходит фиксация альфа фазы, пересыщенной бериллием).
  • Отпуск необходим для снятия внутренних напряжений, а также для придания материалу требуемого комплекса механических и эксплуатационных свойств. В большинстве случаев материал становится более пластичным при некотором уменьшении прочности.
  • Нормализация. Изделие нагревают до аустенитного состояния (на 30…50 градусов выше АС3) и охлаждают на спокойном воздухе
  • Дисперсионное твердение (старение). После проведения закалки (без полиморфного превращения) проводится нагрев на более низкую температуру с целью выделения частиц упрочняющей фазы. Иногда проводится ступенчатое старение при нескольких температурах с целью выделения нескольких видов упрочняющих частиц.
  • Криогенная обработка — это упрочняющая термическая обработка металлопродукции при криогенных, сверхнизких температурах (ниже минус 153°С).
  • Ранее для обозначения этого процесса использовалась иная терминология — «обработка холодом», «термическая обработка стали при температурах ниже нуля», но они не совсем точно отражали суть процесса криогенной обработки.
    Суть криогенной обработки заключается в следующем: детали и механизмы помещаются в криогенный процессор, где они медленно охлаждаются и после выдерживаются при температуре минус 196˚С в течение определенного времени. Затем обрабатываемые изделия постепенно возвращаются к комнатной температуре. Во время этого процесса в металле происходят структурные изменения. Они существенно повышают износостойкость, циклическую прочность, коррозионную и эрозионную стойкость.
    Эта технология позволяет повысить ресурс инструментов, деталей и механизмов до 300 % за счет улучшения механических характеристик материала в результате обработки сверхнизкими температурами.
    Наибольшего эффекта удается достичь при обработке таких металлических изделий, как специальный режущий, штамповый, прессовый, прокатный, мелющий инструмент, подшипники, ответственные пружины.
    Основные свойства металла, приобретенные в ходе глубокого охлаждения, сохраняются в течение всего срока их службы, поэтому повторной обработки не требуется.
    Криогенная технология не заменяет существующие методы термического упрочнения, а позволяет придать материалу, обработанному холодом, новые свойства, которые обеспечивают максимальное использование ресурса материала, заданного металлургами.
    Использование инструмента, обработанного сверхнизкими температурами, позволяет предприятиям значительно сократить расходы за счет:

    • увеличения износостойкости инструмента, деталей и механизмов
    • снижения количества брака
    • сокращения затрат на ремонт и замену технологического оснащения и инструмента.

    Теоретическая разработка и практическое освоение процесса криогенной обработки считается достижением советской науки. Работы таких учёных, как Г. В. Курдюмова, исследования А. П. Гуляева, В. Г. Воробьева и других связаны с обработкой холодом для улучшения качественных характеристик закаленной стали.

    Спустя несколько лет после публикации исследований советских учёных появились первые аналогичные работы в иностранной печати, авторы которых ссылались на советские работы как первоисточник. Именно работы советских учёных позволили полно оценить эффективность влияния обработки холодом на свойства стали и положили начало современному развитию и использования этого способа обработки. В 1940—1950-е годы на советских промышленных предприятиях пытались внедрить криогенную обработку инструмента из быстрорежущих сталей в жидком азоте, но это не только не давало ожидаемого результата, но и приводило к снижению прочности инструмента, поскольку появлялись микротрещины из-за резкого и неравномерного охлаждения. От метода, позволяющего преобразовать остаточный аустенит в мартенсит, пришлось отказаться, в основном из-за экономической нецелесообразности — высокой стоимости азота, как основного хладагента.

    В США, Японии, Германии, Южной Корее тему криогенной обработки как эффективного способа обработки конструкционных и инструментальных сталей развивали, и десятилетия исследований и опытов привели к результату — в настоящее время технология криогенной обработки успешно применяется во многих отраслях промышленности.

    Читайте также:  Универсальный распылитель низкого давления

    Металлообработка и машиностроение:

    • увеличение ресурса инструмента и оборудования до 300 %
    • увеличение износостойкости материалов
    • увеличение циклической прочности
    • увеличение коррозионной и эрозионной стойкости
    • снятие остаточных напряжений

    Транспорт и спецтехника:

    • увеличение ресурса тормозных дисков до 250 %
    • повышение эффективности работы тормозной системы
    • увеличение циклической прочности пружин подвески и других упругих элементов на 125 %
    • увеличение ресурса и мощности двигателя
    • снижение расходов на эксплуатацию транспортных средств
    • увеличение эксплуатации оружия до 200 %
    • уменьшение влияния нагрева оружия на результаты стрельбы
    • увеличение ресурса узлов и механизмов

    Добывающая и обрабатывающая промышленность:

    • увеличение стойкости породоразрушающего инструмента до 200 %
    • уменьшение абразивного износа машин и механизмов
    • увеличение коррозийной и эрозийной стойкости оборудования
    • увеличение ресурса промышленного и горнодобывающего оборудования

    Аудиотехника и музыкальные инструменты:

    • уменьшение искажения сигнала в проводниках
    • уменьшение рассеиваемого проводниками тепла на 30-40 %
    • улучшение музыкальной детальности, ясности и прозрачности звучания
    • расширение диапазона звучания музыкальных инструментов

    Применение криогенной обработки актуально практически для любой отрасли, где есть необходимость повышения ресурса, увеличения усталостной прочности и износостойкости, а также требуется рост производительности.

    Примеры [ править | править код ]

    Гомогенизационный отжиг + старение
    Например, для суперсплавов на базе никеля (типа «Инконель 718») типичной является следующая термическая обработка:
    Гомогенизация структуры и растворение включений (англ. Solution Heat Treatment ) при 768—782 °C с ускоренным охлаждением. Затем производится двухступенчатое старение (англ. Precipitation Heat Treatment ) — 8 часов при температуре 718 °C, медленное охлаждение в течение 2 часов до 621—649 °C и выдержка в течение 8 часов. Затем следует ускоренное охлаждение.
    Закалка + высокий отпуск (улучшение)
    Многие стали проходят упрочнение путём закалки — ускоренного охлаждения (на воздухе, в масле или в воде). Быстрое охлаждение приводит, как правило, к образованию неравновесной мартенситной структуры. Сталь непосредственно после закалки отличается высокой твёрдостью, остаточными напряжениями, низкой пластичностью и вязкостью. Так, сталь 40ХНМА (SAE 4340) сразу после закалки имеет твёрдость выше 50 HRC, в таком состоянии материал непригоден для дальнейшего использования из-за высокой склонности к хрупкому разрушению. Последующий отпуск — нагрев до 450 °C — 500 °C и выдержка при этой температуре приводят к уменьшению внутренних напряжений за счёт распада мартенсита закалки, уменьшения степени тетрагональности его кристаллической решётки (переход к отпущенному мартенситу). При этом твёрдость стали несколько уменьшается (до 45 — 48 HRC). Подвергаются улучшению стали с содержанием углерода 0,3 — 0,6 % C.

    Обработка дерева и металла

    Предварительная обработка инструментальных сталей состоит из операций отжига и улучшения (нормализации).

    Заготовки охлаждают в печи с температурой 720…740 °С. После выравнивания температуры заготовки выдерживают в печи не менее 3 ч до понижения их температуры до 500 °С. Затем заготовки охлаждают на воздухе, после чего они поступают на отжиг для снятия внутренних напряжений, снижения твердости и изменения структуры стали.

    В зависимости от того, какую цель преследует отжиг, устанавливают режим его проведения: температуру скорость нагрева, продолжительность выдержки и скорость охлаждения. Температуры отжига углеродистой, легированной и высоколегированной сталей принимаются на 30…40 °С выше точки A cj, потому что при этой температуре, называемой первой критической точкой, в стали происходят основные структурные изменения’. При неполном отжиге, цель которого состоит в устранении внутренних напряжений, сталь с любым содержанием углерода нагревают до температуры 750…760 °С.

    Скорость нагрева при отжиге должна обеспечивать равномерный нагрев всей садки. Для углеродистой и легированной сталей скорость нагрева не должна превышать 10° в час, а для быстрорежущих — 50° в час. Время выдержки при отжиге в камерных печах обычно составляет 1…2 ч.

    Ориентировочные режимы полного отжига для некоторых марок сталей следующие: для У7А, У8А, У8ГА-— нагрев медленный до температуры 750…770 °С и охлаждение с печью со скоростью 50 °С в час до 550…600 °С, затем — на воздухе; для X, ХГ, ХВГ — нагрев медленный до температуры 750…770 °С и охлаждение с печью со скоростью 30 °С в час до 400 °С, затем — на воздухе.

    Нормализация. Для повышения режущих свойств фасонных инструментов, предназначенных для обработки твердых сталей, рекомендуется осуществлять предварительное улучшение заготовок по следующей технологии: закалка в масле температурой 1280 °С для стали Р18 и 1230 °С — для стали Р9 (после предварительной механической обработки заготовок); нормализация с нагревом до 840…860 °С; низкотемпературная закалка с нагревом до 920…950 °С в масле; отпуск при температуре 670…720 °С с выдержкой 2…3 ч для достижения твердости HRC 33…37 и хорошей обрабатываемости на чистовых операциях. Так как процесс улучшения удорожает стоимость инструментов, применять его следует только для заготовок, забракованных при поставке по твердости и структуре.

    Закалка — наиболее ответственная операция термической обработки инструмента, обеспечивающая (вместе с отпуском) его твердость, износостойкость, теплостойкость и прочность.

    Результаты закалки в основном обусловлены температурой окончательного нагрева инструментов и про. должительностью выдержки при этой температуре. Нагрев инструментов осуществляют в камерных газовых или электрических печах, ваннах с расплавом солей в свинцовых ваннах, токами высокой частоты. Наиболее широко распространен способ нагрева в хлорбарие-вых ваннах, так как он обеспечивает интенсивность и равномерность процесса, возможность местного нагрева инструмента и инструмента большой длины с минимальной деформацией, а также защиту поверхности от окисления.

    Контрольно – измерительные инструменты целесообразно нагревать под закалку в электрических печах с защитной газовой атмосферой, где они практически не обезуглероживаются и после закалки имеют чистую поверхность.

    Измерительные инструменты под поверхностную закалку нагревают токами высокой частоты. На рис. 144 приведен пример нагрева токами высокой частоты угольника, который опирается на керамическую подставку. Индуктор изготовлен из медной трубки и изогнут таким образом, что охватывает весь контур угольника.

    Для охлаждения инструментов применяют различные среды— воду, масла или растворы солей в воде. Необходимая скорость охлаждения, оказывающая влияние на качество закалки, достигается рациональным выбором охлаждающей среды для данной марки стали.

    Читайте также:  Измерение влажности древесины влагомером

    Охлаждающая способность воды зависит от ее температуры. Так, при температуре 30 °С ее охлаждающая способность резко падает. Масло, подогретое до температуры 50…60 °С, обладает более высокой охлаждающей способностью, чем холодное. При закалке инструментов сложной формы применяют 50%-ный раствор каустической соды температурой 50 °С.

    Отпуск. Основное назначение отпуска стали — в снятии внутренних напряжений и превращении остаточного аустенита в мартенсит. Операция отпуска должна следовать немедленно после закалки. Большой перерыв между этими операциями приводит к появлению на инструментах из высокоуглеродистых сталей трещин.

    Каждая марка стали имеет свою температуру отпуска. Углеродистые и легированные стали нагревают при отпуске до температуры 150…250 °С, а быстрорежущие—до 560…600 °С. Отпуск быстрорежущей стали сопровождается увеличением ее твердости; так, при нагреве ее до указанных температур происходит процесс выделения части карбидов из аустенита, который при последующем охлаждении превращается в мартенсит. Осуществление нескольких отпусков повышает степень перехода остаточного аустенита в мартенсит, поэтому для стали Р18 применяют двух-трехкратный отпуск, а для стали Р9 — даже трех-четырехкратный. После отпуска охлаждение производят на воздухе.

    Отпуск при низких температурах (120… 160 °С) носит название старения. Ему подвергают в основном измерительные инструменты для предотвращения их коробления и снятия внутренних напряжений, возникающих при шлифовании. Старение производят после чернового шлифования инструментов.

    Закалка при температуре ниже нуля. Структура легированных и высокоуглеродистых сталей после закалки состоит в основном из мартенсита и остаточного аустенита. Превращение остаточного аустенита в мартенсит происходит при последующем отпуске или в результате естественного старения. Во многих высоколегированных сталях аустенит весьма устойчив и полностью превратить его в мартенсит даже путем многократных отпусков не удается. Охлаждение закаленной стали при температуре ниже нуля создает условия для продолжения процесса превращения аустенита в мартенсит. В таких случаях инструмент обрабатывают в следующей последовательности: закалка; очистка — промывка и обдувка; охлаждение до температуры (—-70)…(—80) °С; отпуск; контроль.

    Классификация ТО. Технология термической обработки. Отжиг: диффузионный и рекристаллизационный, полный, неполный, изотермический, сфероидизирующий. Нормализация. Влияние нормализации на структуру и механические свойства. Закалка. Виды и назначение отпуска.

    Термической обработкой называется совокупность операций нагрева, выдержки и охлаждения твердых металлических сплавов с целью получения заданных свойств за счет изменения внутреннего строения и структуры. Термическая обработка используется либо в ка­честве промежуточной операции для улучшения обрабатываемости давлением, резанием, либо как окончательная операция технологического процесса, обеспечивающая заданный уровень свойств детали.


    Отжиг — это первичная операция термической обработки, при которой стали нагревают до определенных температур, выдерживают при этих температурах и затем медленно охлаждают вместе с печью.

    В зависимости от температуры нагрева и назначения различают следующие виды отжига: полный, неполный, отжиг на зернистый перлит, изотермический, диффузионный и т. д.

    Полныйотжиг осуществляется главным образом после горячей механической обработки и литья углеродистых и легированных сталей. Основной целью полного отжига кованых и литых деталей является измельчение зерна, смягчение металла для улучшения его обработки режущим инструментом и устранение вну­ренних напряжений. Это достигается нагревом, не превышающим 20-40°С верхней критической точки АСз,и медленным охлаждением.

    Время выдержки при температуре отжига обычно складывается из времени, необходимого для полного прогрева всей массы деталей, и времени, нужного для окончания структурных превращений. После отжига сталь медленно охлаждают вместе с печью. Детали, изготовленные из углеродистой стали, охлаждают со скоростью 180-200°С в час, из низколегированных сталей — со скоростью 90-100°С в час, из высоколегированных — со скоростью примерно 50°С в час. Высоколегированные стали целесообразнее подвергать изотермическому отжигу.

    Неполный отжиг. Если до отжига структура стали была удовлетворительная, но сталь обладает повышенной твердостью и в деталях имеются внутренние напряжения, то целесообразнее применять неполный отжиг. Детали при таком отжиге нагревают при температуре, немного превышающей точку ACl. Неполный отжиг изменяет структуру перлита, однако, структура феррита может оставаться неизменной. Внутренние напряжения снимаются полностью, и сталь получает пониженную твердость и хорошо обрабатывается механически.

    Отжиг на зернистый перлит (сфероидизация). Заэвтектоидные высокоуглеродистые инструментальные стали со структурой пластинчатого перлита имеют плохую обрабатываемость режущим инструментом. Поэтому заэвтектоидные углеродистые и легированные стали подвергают отжигу только на зернистый перлит.

    Получение зернистого перлита достигается специальным видом отжига, близким по своему режиму к неполному отжигу. Сталь нагревают немного выше AClс последующим охлаждением сначала до 700°С, затем до 550-600°С и далее на воздухе. Особенно важным для получения зернистого перлита является точное соблюдение температурного режима, так как при очень медленном охлаждении зернистый перлит получается с крупными зернами, а часто с отдельными пластинками перлита, а при более быстром охлаждении образуется мелкозернистый (точечный) перлит. Поэтому для получения зернистого перлита целесообразно применять циклический или маятниковый отжиг. При таком отжиге сталь нагревают до 760-780°С, после небольшой выдержки охлаждают имеете с печью до 680 — 700°С и затем снова повторяют весьцикл несколько раз.

    Изотермический отжиг. Этот вид отжига заключаетсяв нагреве стали на 30-50°С выше точки Ас3, охлаждении дотемпературы несколько ниже точки Аr1,изотермической выдержке при этой температуре для полного превращения аустенита и последующем охлаждении на воздухе. Изотермический отжиг позволяет сокращать продолжительность циклов, используемых при обычном отжиге высоколегированной стали, с 15-30 до 4-7 час. и дает однородную структуру. Такой отжиг особенно необходим для высокохромистых сталей с устойчивым аустенитом.

    Диффузионный отжиг (гомогенизация). Он производится для устранения или уменьшения химической неоднородности, получаемой при затвердевании стальных слитков (дендритная ликвация). Выравнивание химического состава стали и уничтожение дендритной ликвации осуществляется путем диффузии (перемещения) атомов примесей из мест с высокой концентрацией в места с низкой концентрацией. Для обеспечения хороших условий диффузии атомов диффузионный отжиг стали, проводят при высоких температурах (1100-1200°С), с длительной выдержкой (от 10 до 15 час.) и медленным охлаждением.

    Читайте также:  Профессиональные сверла по металлу

    Рекристаллизационный (разупрочняющий)отжиг. При деформации стали вхолодном состоянии происходит ее наклеп. Зерна феррита и перлита вытягиваются по направлению деформации. Вследствие этого наклепа искажается кристаллическая решетка, сталь становится более жесткой, твердой и пластичность ее резко падает. Для восстановления пластичности и устранения наклепа деформированную сталь (обычно листовую) подвергают рекристаллизационному отжигу. Отжиг обычно производят при температуре 650-680°С, в результате чего вместо старых вытянутых зерен в исходной структуре образуются новые, равноосные зерна и сталь становится мягкой и вязкой.

    Нормализация.Термическую операцию, при которой сталь нагревают до температуры 30-50°С выше верхних критических точек АСзи Аст,выдерживают при этой температуре и затем охлаждают на спокойном воздухе, называют нормализацией.

    Нормализацией устраняют внутренние напряжения и наклеп, повышают механические свойства и подготовляют структуру стали для окончательной термической обработки.

    При нормализации превращение аустенита происходит с большей степенью переохлаждения, чем при отжиге, поэтому перлит имеет более тонкую структуру. В результате нормализации сталь получает нормальную, однородную мелкозернистую структуру. Дефектыи брак при отжиге и нормализации.В процессе отжига и нормализации может возникать неисправимый и исправимый брак (дефекты). Наиболее распространенными видами дефектов и брака являются: окисление, обезуглероживание, перегрев и пережог стали.

    Закалка. Это процесс термической обработки, при которой сталь нагревают до оптимальной температуры, выдерживают при этой температуре и затем быстро охлаждают с целью получения неравновесной структуры. В результате закалки повышается прочность и твердость и понижается пластичность конструкционных и инструментальных сталей и сплавов. Качество закалки зависит от температуры и скорости нагрева, времени выдержки и охлаждения. Основными параметрами закалки являются температура нагрева и скорость охлаждения.

    Отпуском называется операция термической обработки, состоящая в нагреве закаленной стали до температуры ниже критической АC1, выдержке при этой температуре и последующем медленном или быстром охлаждении. В зависимости от температуры нагрева различают низкий, средний и высокий отпуск.
    Низкий отпуск достигается нагревом до температуры 150—250° С, выдержкой при этой температуре и последующим охлаждением на воздухе. Средний отпуск производят при 300—500° С. Твердость стали заметно понижается, вязкость увеличивается.
    Высокий отпуск происходит при 500—600° С, его основное назначение — получить наибольшую вязкость при доста­точных пределах прочности и упругости стали.

    Тема 6.2. Химико-термическая и термо-механическая обработка.

    Цементация. Азотирование. Нитроцементация. Ионное азотирование. Высокотемпературная и низкотемпературная термомеханическая обработка.

    Цементация –химико-термическая обработка, заключающаяся в диффузионном насыщении поверхностного слоя атомами углерода при нагреве до температуры900…950 o С.

    Цементации подвергают стали с низким содержанием углерода (до 0,25 %).

    Нагрев изделий осуществляют в среде, легко отдающей углерод. Подобрав режимы обработки, поверхностный слой насыщают углеродом до требуемой глубины.

    Азотирование –химико-термическая обработка, при которой поверхностные слои насыщаются азотом.

    Впервые азотирование осуществил Чижевский И.П., промышленное применение – в двадцатые годы. При азотировании увеличиваются не только твердость и износостойкость, но также повышается коррозионная стойкость.При азотировании изделия загружают в герметичные печи, куда поступает аммиак NH3 c определенной скоростью. При нагреве аммиак диссоциирует по реакции:2NH3>2N+3H2. Атомарный азот поглощается поверхностью и диффундирует вглубь изделия.

    Нитроцементация– газовое цианирование, осуществляется в газовых смесях из цементующего газа и диссоциированного аммиака.

    Состав газа температура процесса определяют соотношение углерода и азота в цианированном слое. Глубина слоя зависит от температуры и продолжительности выдержки.

    Нитроцементация– газовое цианирование, осуществляется в газовых смесях из цементующего газа и диссоциированного аммиака.

    Состав газа температура процесса определяют соотношение углерода и азота в цианированном слое. Глубина слоя зависит от температуры и продолжительности выдержки.

    Сущность ионного азотирования заключается в том, что в герметичном контейнере создается разреженная азотосодержащая атмосфера. С этой целью можно использовать чистый азот, аммиак или смесь азота и водорода. Внутри контейнера размещают азотируемые детали, которые подключают к отрицательному полюсу источника постоянного напряжения. Они играют роль катода. Анодом служит стенка контейнера. Между катодом и анодом включается высокое напряжение (500—1000 В). В этих условиях происходит ионизация газа. Образующиеся положительно заряженные ионы азота устремляются к отрицательному полюсу — катоду. Электрическое сопротивление газовой среды вблизи катода резко возрастает, вследствие чего почти все напряжение, подаваемое между анодом и катодом, падает на сопротивление вблизи катода, на расстоянии нескольких миллиметров от него. Благодаря этому создается очень высокая напряженность электрического поля вблизи катода.

    Ионы азота, входя в эту зону высокой напряженности, разгоняются до больших скоростей и, соударяясь с деталью (катодом), внедряются в ее поверхность. При этом высокая кинетическая энергия, которую имели ионы азота, переходит в тепловую. В результате деталь за короткое время, примерно 15— 30 мин, разогревается до температуры 470—580°С, при которой происходит диффузия азота в глубь металла, т. е. идет процесс азотирования.

    Термомеханическая обработка (ТМО) заключается в сочетании пластической деформации сталей в нагретом состоянии с последующей закалкой и низким отпуском.

    1) Высокотемпературная ТМО (ВТМО), осуществляется в процессе деформации металла при температуре выше Ас3 (степень деформации 20-30%) с последующей закалкой и низким отпуском при температуре 200-300 0 С

    2) Низкотемпературная ТМО (НТМО)– это нагрев сталей выше точки Ас3 с последующей деформацией при температуре 400-600 0 С (выше точки Мн, но ниже температуры рекристаллизации) с последующей закалкой и низким отпуском. Степень деформации составляет 75-95%.

    Отправить ответ

      Подписаться  
    Уведомление о
    Adblock
    detector