От чего зависит теплопроводность материала

Теплопроводность.

Так что же такое теплопроводность? С точки зрения физики теплопроводность – это молекулярный перенос теплоты между непосредственно соприкасающимися телами или частицами одного тела с различной температурой, при котором происходит обмен энергией движения структурных частиц (молекул, атомов, свободных электронов).

Можно сказать проще, теплопроводность – это способность материала проводить тепло. Если внутри тела имеется разность температур, то тепловая энергия переходит от более горячей его части к более холодной. Передача тепла происходит за счет передачи энергии при столкновении молекул вещества. Происходит это до тех пор, пока температура внутри тела не станет одинаковой. Такой процесс может происходить в твердых, жидких и газообразных веществах.

На практике, например в строительстве при теплоизоляции зданий, рассматривается другой аспект теплопроводности, связанный с передачей тепловой энергии. В качестве примера возьмем “абстрактный дом”. В “абстрактном доме” стоит нагреватель, который поддерживает внутри дома постоянную температуру, скажем, 25 °С. На улице температура тоже постоянная, например, 0 °С. Вполне понятно, что если выключить обогреватель, то через некоторое время в доме тоже будет 0 °С. Все тепло (тепловая энергия) через стены уйдет на улицу.

Чтобы поддерживать температуру в доме 25 °С, нагреватель должен постоянно работать. Нагреватель постоянно создает тепло, которое постоянно уходит через стены на улицу.

Коэффициент теплопроводности.

Количество тепла, которое проходит через стены (а по научному – интенсивность теплопередачи за счет теплопроводности) зависит от разности температур (в доме и на улице), от площади стен и теплопроводности материала, из которого сделаны эти стены.

Для количественной оценки теплопроводности существует коэффициент теплопроводности материалов. Этот коэффициент отражает свойство вещества проводить тепловую энергию. Чем больше значение коэффициента теплопроводности материала, тем лучше он проводит тепло. Если мы собираемся утеплять дом, то надо выбирать материалы с небольшим значением этого коэффициента. Чем он меньше, тем лучше. Сейчас в качестве материалов для утепления зданий наибольшее распространение получили утеплители из минеральной ваты, и различных пенопластов. Набирает популярность новый материал с улучшенными теплоизоляционными качествами – Неопор.

Коэффициент теплопроводности материалов обозначается буквой ? (греческая строчная буква лямбда) и выражается в Вт/(м2*К). Это означает, что если взять стену из кирпича, с коэффициентом теплопроводности 0,67 Вт/(м2*К), толщиной 1 метр и площадью 1 м2., то при разнице температур в 1 градус, через стену будет проходить 0,67 ватта тепловой энергии. Если разница температур будет 10 градусов, то будет проходить уже 6,7 ватта. А если при такой разнице температур стену сделать 10 см, то потери тепла будут уже 67 ватт. Подробней о методике расчета теплопотерь зданий можно посмотреть здесь.

Следует отметить, что значения коэффициента теплопроводности материалов указываются для толщины материала в 1 метр. Чтобы определить теплопроводность материала для любой другой толщины, надо коэффициент теплопроводности разделить на нужную толщину, выраженную в метрах.

В строительных нормах и расчетах часто используется понятие “тепловое сопротивление материала”. Это величина обратная теплопроводности. Если, на пример, теплопроводность пенопласта толщиной 10 см – 0,37 Вт/(м2*К), то его тепловое сопротивление будет равно 1 / 0,37 Вт/(м2*К) = 2,7 (м2*К)/Вт.

Коэффициент теплопроводности материалов.

Ниже в таблице приведены значения коэффициента теплопроводности для некоторых материалов применяемых в строительстве.

В привычной для населения страны холодной зиме, востребованность теплоизоляционных материалов всегда на высоком уровне. Необходимо учитывать все особенности каждого из утеплителей, чтобы сделать выбор в пользу качественного и целесообразного материала.

Содержание:

Зачем нужна теплоизоляция?

Актуальность теплоизоляции заключается в следующем:

  • Сохранение тепла в зимний период и прохлады в летний период.

Потери тепла сквозь стены обычного многоэтажного жилого дома составляют 30-40%. Для снижения теплопотерь нужны специальные теплоизоляционные материалы. Применение в зимний период электрических обогревателей способствует дополнительному расходу на электроэнергию. Эти расходы выгодней компенсировать использованием качественного теплоизоляционного материала, обеспечивающего сохранение тепла в зимний период и прохладу в летнюю жару. При этом затраты на охлаждение помещения кондиционером также будут сведены к минимуму.

  • Увеличение долговечности конструкций здания.

В случае промышленных зданий с использованием металлического каркаса, утеплитель позволяет защитить поверхность металла от коррозии, являющейся самым пагубным дефектом для данного вида конструкций. А срок службы для здания из кирпича определяется количеством циклов замораживания/оттаивания. Воздействие этих циклов воспринимает утеплитель, ведь точка росы при этом находится в теплоизоляционном материале, а не материале стены. Такое утепление позволяет увеличить срок службы здания во много раз.

Читайте также:  Чем зарядить аккумулятор машины

Защита от возрастающего уровня шума достигается при использовании таких шумопоглощающих материалов (толстые матрасы, звукоотражающие стеновые панели).

  • Увеличение полезной площади зданий.

Использование системы теплоизоляции позволяет уменьшить толщину наружных стен, при этом увеличивая внутреннюю площадь здания.

Как правильно выбрать утеплитель?

При выборе утеплителя нужно обращать внимание на: ценовую доступность, сферу применения, мнение экспертов и технические характеристики, являющиеся самым важным критерием.

Основные требования, предъявляемые к теплоизоляционным материалам:

  • Теплопроводность.

Теплопроводность подразумевает под собой способность материала передавать теплоту. Это свойство характеризуется коэффициентом теплопроводности, на основе которого принимают необходимую толщину утеплителя. Теплоизоляционный материал с низким коэффициентом теплопроводности является лучшим выбором.

Также теплопроводность тесно связана с понятиями плотности и толщины утеплителя, поэтому при выборе необходимо обращать внимание и на эти факторы. Теплопроводность одного и того же материала может изменяться в зависимости от плотности.

Под плотностью понимают массу одного кубического метра теплоизоляционного материала. По плотности материалы подразделяются на: особо лёгкие, лёгкие, средние, плотные (жёсткие). К легким относятся пористые материалы, подходящие для утепления стен, перегородок, перекрытий. Плотные утеплители лучше подходят для утепления снаружи.

Чем меньше плотность утеплителя, тем меньше вес, а теплопроводность выше. Это является показателем качества утепления. А небольшой вес способствует удобству монтажа и укладки. В ходе опытных исследований установлено, что утеплитель, имеющий плотность от 8 до 35 кг/м³ лучше всего удерживает тепло и подходят для утепления вертикальных конструкций внутри помещений.

А как зависит теплопроводность от толщины? Существует ошибочное мнение, что утеплитель большой толщины будет лучше удерживать тепло внутри помещения. Это приводит к неоправданным расходам. Слишком большая толщина утеплителя может привести к нарушению естественной вентиляции и в помещении будет слишком душно.

А недостаточная толщина утеплителя приводит к тому, что холод будет проникать через толщу стены и на плоскости стены образуется конденсат, стена будет неотвратимо отсыревать, появится плесень и грибок.

В случае игнорирования расчета может появиться ряд проблем, решение которых потребует больших дополнительных затрат!

Таблица теплопроводности материалов

Материал Теплопроводность материалов, Вт/м*⸰С Плотность, кг/м³
Пенополиуретан 0,020 30
0,029 40
0,035 60
0,041 80
Пенополистирол 0,037 10-11
0,035 15-16
0,037 16-17
0,033 25-27
0,041 35-37
Пенополистирол (экструдированный) 0,028-0,034 28-45
Базальтовая вата 0,039 30-35
0,036 34-38
0,035 38-45
0,035 40-50
0,036 80-90
0,038 145
0,038 120-190
Эковата 0,032 35
0,038 50
0,04 65
0,041 70
Изолон 0,031 33
0,033 50
0,036 66
0,039 100
Пенофол 0,037-0,051 45
0,038-0,052 54
0,038-0,052 74
  • Экологичность.

Этот фактор является значимым, особенно в случае утепления жилого дома, так как многие материалы выделяют формальдегид, что влияет на рост раковых опухолей. Поэтому необходимо делать выбор в сторону нетоксичных и биологически нейтральных материалов. С точки зрения экологичности лучшим теплоизоляционным материалом считается каменная вата.

  • Пожарная безопасность.

Материал должен быть негорючим и безопасным. Гореть может любой материал, разница состоит в том, при каком температуре он возгорается. Важным является то, чтобы утеплитель был самозатухающим.

  • Паро- и водонепроницаемость.

Преимущество имеют те материалы, которые обладают водонепроницаемостью, так как впитывание влаги приводит к тому, что эффективность материала становится низкой и полезные характеристики утеплителя через год использования снижаются на 50% и более.

В среднем срок службы изоляционных материалов составляет от 5 до 10-15 лет. Теплоизоляционные материалы, имеющие в составе вату в первые годы службы значительно снижают свою эффективность. Зато пенополиуретан обладает сроком службы свыше 50 лет.

Достоинства и недостатки утеплителей

  1. Пенополиуретан на сегодняшний день самый эффективный утеплитель.

Виды ППУ

Достоинства: бесшовный монтаж пеной, долговечность, лучшая тепло- и гидроизоляция.

Недостатки: дороговизна материала, неустойчивость к УФ-излучению.

  1. Пенополистирол (пенопласт) – востребован для использования в качестве утеплителя для помещений разных типов.

Достоинства: низкая теплопроводность, невысокая стоимость, удобство монтажа, водонепроницаемость.

Недостатки: хрупкость, легкая воспламеняемость, образование конденсата.

  1. Экструдированный пенополистирол – прочный и удобный материал, при необходимости элементов нужного размера легко разрезается ножом.

Достоинства: очень низкая теплопроводность, водонепроницаемость, прочность на сжатие, удобство монтажа, отсутствие плесени и гниения, возможность эксплуатации от -50⸰С до +75⸰С.

Недостатки: намного дороже пенопласта, восприимчивость к органическим растворителям, образование конденсата.

  1. Базальтовая (каменная) вата – минеральная вата, изготавливающаяся на базальтовой основе.

Достоинства: противостояние образованию грибков, звукоизоляция, прочность к механическим воздействиям, огнеупорность, негорючесть.

Недостатки: более высокая стоимость, по сравнению с аналогами.

  1. Эковата – утеплитель, выполненный на основе естественных материалов (волокна дерева и минералы). На сегодняшний день применяется довольно часто.
Читайте также:  Угол заточки железки ручного рубанка

Достоинства: звукоизоляция, экологичность, влагостойкость, доступная стоимость.

Недостатки: во время эксплуатации повышается теплопроводность, необходимость специального оборудования для монтажа, возможность усадки.

  1. Изолон – современный утеплитель, изготавливаемый путем вспенивания полиэтилена. Является одним из самых востребованных.

Достоинства: низкая теплопроводность, низкая паропроницаемость, высокая шумоизоляция, удобство резки и монтажа, экологичность, гибкость, небольшой вес.

Недостатки: низкая прочность, необходимость устройства вентиляционного зазора.

  1. Пенофол – утеплитель, который отвечает многим требованиям, предъявляемым к качеству утеплителя и утепления различных помещений, а также конструкций и т.д.

Достоинства: экологичность, высокая способность к отражению тепла, высокая шумоизоляция, влагонепроницаемость, негорючесть, удобство перевозки и монтажа, отражение воздействия радиации.

Недостатки: малая жесткость, затрудненность крепления материала, в качестве теплоизоляции одного пенофола недостаточно.

Заключение

Рассмотренные достоинства и недостатки утеплителей позволят выбрать самый подходящий вариант уже на стадии проектирования. При этом учитывать все требования, предъявляемые к теплоизоляционному материалу, в первую очередь теплопроводность.

Теплопроводность есть способность материала проводить тепло через свою массу. Степень теплопроводности материала характеризуется величиной его коэффициента теплопроводности λ. Коэффициент теплопроводности показывает количество тепла в Вт которое будет проходить за 1 ч через 1 м плоской стенки толщиной 1 м при разности температур на ее поверхностях, равной 1°С. Коэффициенты теплопроводности строительных материалов изменяются в пределах от λ =0,035 (мипора, пенополистирол) до λ =3 Вт/(м ·°С) (гранит). Металлы имеют еще большие величины коэффициента теплопроводности. Величина коэффициента теплопроводности для одного и того же материала не является величиной постоянной, она может изменяться в зависимости от его объемного веса, влажности, температуры и направления теплового потока. Зависимость коэффициента теплопроводности материала от его объемного веса. С увеличением объемного веса (уменьшением пористости) коэффициент теплопроводности материала возрастает и наоборот. Изменение коэффициента теплопроводности строительных материалов с изменением их объемного веса происходит вследствие того, что всякий строительный материал состоит из основного вещества — скелета (кварца, кальцита, глинозема и т.п.) и воздуха, находящегося в порах материала.

Коэффициент теплопроводности самого материала равен некоторой средней величине между коэффициентом теплопроводности основного вещества материала и коэффициентом теплопроводности воздуха, содержащегося в порах. Чем меньше пор в материале, а следовательно, чем больше его объемный вес, тем больше и его коэффициент теплопроводности и наоборот.

Единой для всех материалов зависимости между теплопроводностью материала и его объемным весом не существует, так как на величину коэффициента теплопроводности оказывают влияние кроме пористости также размер пор и структура материала. При одинаковой пористости величина λ, будет тем больше, чем крупнее поры материала, так как с увеличением размера пор повышается коэффициент теплопроводности воздуха, заключенного в порах.

На коэффициент теплопроводности влияет также величина контактных площадок между отдельными частицами материала: чем эти площадки будут больше, тем выше будет и λ. Кроме того, имеет значение, будут ли поры замкнутыми или сообщаться между собой. При сообщающихся порах в материале могут возникать конвекционные токи воздуха, что приводит к увеличению его коэффициента теплопроводности.

На величину коэффициента теплопроводности материала оказывает влияние теплопроводность основного вещества (скелета).

Лучшими теплотехническими показателями обладают легкие материалы. Если для получения удовлетворительных теплотехнических качеств наружных стен жилых зданий в условиях Москвы толщина стены из обычного кирпича должна быть в 2,5 кирпича, то при применении пористого кирпича с объемным весом 1200 кг/м 3 и легкого шлакового раствора эта толщина снижается до 1,5 кирпича.

Для сыпучих материал коэффициент теплопроводности уменьшается с уменьшением объемного веса и величины их зерен. Чем мельче частицы сыпучего материала, тем меньше воздушные полости, разделяющие частицы, а следовательно, и меньше теплопроводность содержащегося в них воздуха; кроме того, по мере измельчения частиц уменьшается и объемный вес материала, и количество проводящего тепло вещества.

Во всех справочниках и формах параллельно со значениями λ, материала приводятся значения γ, что необходимо для правильного выбора коэффициента теплопроводности.

Зависимость коэффициента теплопроводности материала от его влажности.Влажность материала в значительной степени определяет его коэффициент теплопроводности. С повышением влажности материала резко повышается и его коэффициент теплопроводности.

Повышение коэффициента теплопроводности материала с увеличением его влажности объясняется тем, что вода, находящаяся в порах материала, имеет коэффициент теплопроводности λ =0,5 Вт/(м ·°С), т.е. в 20 раз больший, чем λ воздуха в порах среднего размера. Кроме того, влага в порах материала увеличивает размеры контактных площадок между частицами материала, что также повышает его коэффициент теплопроводности.

Большая интенсивность возрастания коэффициента теплопроводности материала при малой влажности объясняется тем, что при увлажнении материала сначала заполняются водой более мелкие поры и капилляры, влияние которых на теплопроводность материала больше, чем крупных пор. Еще более резко возрастает коэффициент теплопроводности в том случае, если влажный материал промерзнет, так как лед имеет коэффициент теплопроводности λ =2 Вт/(м ·°С), т. е. в 4 раза больший, чем вода, и в 80 раз больший, чем воздух в порах материала. Однако необходимо учитывать, что замерзание влаги в порах материала происходит при температуре ниже 0°С, причем, чем меньше размер пор, тем при более низких температурах будет замерзать влага во влажном материале. Замерзание влаги в строительных материалах происходит постепенно по мере понижения температуры. Очевидно, какое большое влияние на теплотехнический режим ограждения оказывает его влажностное состояние. О причинах повышения влажности материала в наружных ограждениях, расчете влажностного режима, а также о мерах, обеспечивающих нормальный влажностный режим ограждений, сказано во второй части.

Читайте также:  Как работает регулятор давления воздуха

Зависимость коэффициента теплопроводности материала от его температуры.Коэффициент теплопроводности материала увеличивается с повышением его средней температуры, при которой происходит передача тепла. Увеличение теплопроводности материалов с повышением их температуры происходит в результате увеличения теплопроводности основной их массы из-за возрастания кинетической энергии молекул. Кроме того, с повышением температуры возрастает и теплопроводность воздуха в порах материала, а также интенсивность передачи в них тепла излучением. В строительной практике зависимость теплопроводности от температуры практического значения не имеет, так как изменение температуры материала в строительных ограждениях редко превышает 60 °С. В практике теплоизоляции поверхностей с высокой температурой, где изменения температуры могут быть значительными, эту зависимость приходится учитывать. Для пересчета значений коэффициентов теплопроводности материалов, полученных при температурах до 100°С, на значения их при 0°С служит эмпирическая формула О.Е. Власова

где — коэффициент теплопроводности материала при 0 °С; — коэффициент теплопроводности материала при t °С; t — температура материала, при которой коэффициент теплопроводности его равен , β — коэффициент для различных строительных материалов, равный примерно 0,0025. В справочниках и руководствах параллельно с указанием величины коэффициента теплопроводности материалов приводятся также температуры, при которых получен этот коэффициент.

Зависимость величины коэффициента теплопроводности от направления теплового потока наблюдается только у анизотропных материалов. Коэффициент теплопроводности древесины значительно увеличивается при направлении теплового потока параллельно направлению волокон, например для сосны на 100%. Различие в величинах коэффициентов теплопроводности дерева в зависимости от направления теплового потока объясняется тем, что при направлении, перпендикулярном волокнам, тепловом потоку приходится пересекать большое количество воздушных зазоров, находящихся внутри волокон древесины и между ними и оказывающих сопротивление прохождению тепла. При направлении теплового потока параллельно волокнам тепловой поток будет идти по стенкам волокон, и в этом случае сопротивление воздуха, заключенного в древесине, будет значительно меньше.

Направление теплового потока влияет на величину коэффициента теплопроводности также у прессованных материалов или материалов, .имеющих волокнистую структуру, и у кристаллов. У изотропных материалов направление теплового потока не влияет на их коэффициент теплопроводности. Увеличением коэффициента теплопроводности древесины при потоке тепла вдоль волокон объясняется резкое понижение температуры в наружных углах деревянных бревенчатых или брусковых стен. При выборе значений коэффициента теплопроводности древесины необходимо учитывать расположение дерева в конструкции и направление теплового потока, например, для деревянного дощатого пола коэффициент теплопроводности древесины будет меньше, чем для пола из торцовых шашек, так как в первом случае поток тепла имеет направление, перпендикулярное волокнам древесины, а во втором параллельное им.

Выбор расчетных значений коэффициентов теплопроводности строительных материалов.Самой трудной и ответственной частью теплотехнических расчетов является выбор расчетных величин коэффициентов теплопроводности материалов, входящих в конструкцию. В СНиП II—3-79*(издание 98 года) для каждого материала даются три значения коэффициента теплопроводности — для сухого состояния, для нормальной влажности, для повышенной влажности. Выбор значений X делается в зависимости от относительной влажности воздуха в помещении и от влажностно-климатической характеристики места строительства. Если рассматриваемый материал по составу и по объемному весу совпадает с одним из материалов, приведенных в СНиП, то величина коэффициента теплопроводности материала берется непосредственно по нормам. Если объемный вес материала отличается от приведенного в СНиП, его расчетный коэффициент теплопроводности определяется по интерполяции между известными значениями для других объемных весов или по экстраполяции за пределами крайних значений.

Дата добавления: 2015-08-11 ; просмотров: 9292 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Отправить ответ

  Подписаться  
Уведомление о
Adblock
detector