Параллельное соединение диодных мостов

Есть два идентичных моста на ток 10А, а мне нужно 15А рабочее, так вот что бы не покупать более мощный мост можно два что уже у меня есть соединить параллельно ? Тем самым получить 20А рабочий ток.

Вам правильно написали, что такое техническое решение является нежелательным и его можно делать только в крайнем случаи, когда нет возможности раздобыть диод (или диодный мост) на бОльший ток.

Если я Вас правильно понимаю, то Вам это нужно сделать один раз для ремонта одного устройства, или для изготовления единичного устройства.

Учитывая, что превышение тока над номинальным невелико, (нужно 12 А, от силы 15 А, при номинальном 10), то можно от безысходности так поступить. Но я бы настоятельно посоветовал бы Вам собрать простейшую примитивную схему и либо полностью снять ВАХ (вольт амперную характеристику), либо хотя бы измерить падение напряжения на диодах в нескольких точках, при больших токах, например, при токе 3, 6 и 9 Ампер. Если разброс будет небольшим (20% или 30%), то как советует Виктор Алексеевич, поставить их на один радиатор и все должно быть нормально. Если разброс будет больше, то постараться найти другую пару диодных мостиков или в крайнем случаи поставить выравнивающие резисторы около 0,1 Ом (с рассеиваемой мощностью более 2 Вт), причем ставить резистор можно не на оба диода, а на тот, который быстрее открывается.

А еще у меня в голову пришла такая интересная идея

Помните, раньше выпрямители делали с нагрузкой не только на электролитический конденсатор, но и на дроссель для снижения пульсаций. Потому что снижать пульсации транзисторами еще не умели, а микросхем КРЕН, тем более еще не было и не могло быть.

Короче, если бы от безысходности я бы делал сам, то я бы намотал бы нагрузил диоды не на один дроссель, а на два. Каждый из диодов отдельно. А потом бы уже второй провод дросселя бы соединил вместе. Тогда бы внутреннее сопротивление проводов дросселей сыграло бы роль выравнивающих диодов.

(последний фрагмент схемы я не рисовал сам, а нашел похожий в интернете. Подразумевается, что если у Вас не ремонт, а изготовление схемы, то надо сделать два таких фрагмента схемы, два диодных моста и у каждого конденсатор-дроссель­ -конденсатор, а уже там где обозначено сопротивление нагрузки соединить параллельно. Если сделать так, то на 99% будет все нормально, если конечно, дроссели одинаковые и многовитковые и если диоды имеют пусть и большой разброс, но все-таки из одной партии и одного типа. Поставить их на общий радиатор можно, но можно и не ставить, а как раз пощупать как греются отдельно, а потом уже поставить на один радиатор, но радиатор помощнее).

Два дросселя целесообразно сделать так. На одном сердечнике мотать в два провода. Начало обмоток подсоединить к разным диодам, а конец обмоток уже соединить вместе. Когда мотают в два провода, то, конечно, провода одинаковые.

Еще я припоминаю, что в 90-е годы по строгим техническим условиям некоторые кремниевые диодные сборки позволялось соединять параллельно, при условии, что ток будет примерно в полтора раза больше, чем максимальный для каждой отдельной сборки. Но при СССР диоды делали с меньшим разбросом параметров.

Диод – это полупроводниковый прибор, который обладает различной проводимостью в зависимости от прикладываемого напряжения. Имеет всего два вывода: анод и катод. При подаче прямого напряжения (на анод подается положительный потенциал по сравнению с катодом) он открыт. При подаче отрицательного напряжения он закрывается.

Эта особенность прибора широко используется в электротехнике, в частности диодный мост применяют для сварочного аппарата, чтобы выпрямлять переменный ток, улучшая качество сварки.

Основные характеристики

Главными параметрами, на которые обращают внимание при выборе выпрямителей для сварочных аппаратов, являются:

  • максимально допустимое постоянное обратное напряжение;
  • максимальный средний прямой ток за период;
  • рабочая частота переключения;
  • постоянное прямое напряжение при максимальном прямом токе;
  • максимально допустимая температура корпуса.

Амплитуда бытовой сети составляет около 310 В, поэтому нужно использовать диоды с обратным напряжением 400 В и выше. Прямой ток жестко связан с мощностью прибора, и на него также обращают внимание. Рабочая частота показывает, в каком выпрямителе можно использовать полупроводник, применять его в сетевом или выходном блоке инвертора.

Прямое напряжение полупроводника характеризует мощность рассеяния на самом приборе. Это позволяет рассчитать размеры радиатора или системы охлаждения. Предельная температура корпуса сварочного аппарата дает возможность предусмотреть схему защиты от перегрева.

Читайте также:  Реле высокого давления для компрессора

Применение в сварке

В любом трансформаторном сварочном аппарате постоянного тока или инверторе присутствуют силовые диоды. Они предназначены для выпрямления переменного тока. Для повышения коэффициента полезного действия диоды подключают по мостовой схеме, в этом случае оба полупериода приходятся на нагрузку.

В трансформаторном сварочном аппарате выпрямительные диоды устанавливают на выходе вторичной обмотки. Сварочное оборудование имеет понижающий трансформатор, соответственно, напряжение холостого хода значительно ниже входного, поэтому здесь требуются приборы большой мощности и низкой частоты. Для этого подойдут выпрямительные диоды В200 (максимальный ток 200А).

Для сварочного инвертора требуется два выпрямителя. Один располагается на входе источника питания. Он преобразует переменный ток 220 вольт 50 Гц в постоянный, который преобразуется в дальнейшем в переменный ток высокой частоты (40-80 кГц).

При мощности аппарата 5 кВт выпрямительные диоды должны иметь обратное напряжение 600-1000 В и средний прямой ток 25-35 А при частоте 50 Гц.

Второй выпрямитель располагается после высокочастотного трансформатора. Здесь требования другие. Максимальный прямой ток должен быть не менее 200 А на частоте 80 кГц, а обратное напряжение превышать напряжение холостого хода (60-70 В).

В любом случае используются диоды из категории мощных, с площадкой для монтажа радиатора, поскольку без отведения тепла устройство быстро сгорит.

Особенность выпрямителей

Выпрямитель для сварочного аппарата выполняется по мостовой схеме. При изготовлении сварочного аппарата своими руками и применении диодов В200 нужно учитывать, что их корпус находится под напряжением.

Поэтому когда выпрямитель устанавливают на радиатор, он должен быть изолирован от остальных элементов схемы, от корпуса прибора и от соседних диодов тоже. А это создает определенные неудобства для сварщика.

Приходится использовать более крупный корпус. Для уменьшения габаритов аппарата применяют выпрямительный прибор ВЛ200, который имеет другую полярность. Это позволяет объединить полупроводники на два парных радиатора.

В последние годы стали выпускать довольно мощные диодные мосты в одном корпусе. По размерам такая конструкция из диодов примерно соответствует спичечному коробку, имеет площадку для посадки радиатора, максимальный прямой ток 30-50 А. Диодная сборка имеет значительно меньшую стоимость по сравнению с диодами В200.

Если по работе устройства требуется более мощный мост, то эту проблему можно легко решить, используя параллельное подключение мостовых сборок. Однако их надежность в таком случае будет ниже, чем у одиночных мощных диодов.

Установка

При использовании параллельной схемы соединения диодных мостов необходимо учитывать, что все они имеют некоторый разброс по параметрам.

Поэтому при подборе элементов необходимо делать это с некоторым запасом прочности. При соблюдении этого требования для сварочного аппарата можно получить диодный мост более компактный, чем при использовании одиночных диодов.

Диодные сборки позволяют размещать их на одном радиаторе, так как корпусы не находятся под напряжением. Это позволяет монтировать их в любом месте, и даже снаружи.

В зависимости от требуемого сварочного тока для выпрямителя могут потребоваться от 3 до 5 диодных сборок. Для лучшей теплоотдачи диодные мосты устанавливаются на радиатор через теплопроводящую пасту.

К контактам проводники рекомендуется подсоединяться пайкой, в противном случае могут быть потери мощности в месте контакта и его сильный нагрев.

Применение на практике

Для примера, рассмотрим инверторный аппарат TELWIN Force 165. Во входном выпрямителе используются диодные сборки GBPC3508. Выпрямительный мост GBPC3508 может работать с током 35 А, обратное напряжение – 800 В.

С ним вместе идет обязательно сглаживающий фильтр из конденсаторов большой емкости. Кроме этого имеется фильтр электромагнитной совместимости, который не пропускает помехи от инвертора в бытовую сеть.

На выходе инвертора используются мощные сдвоенные диоды с общим катодом. Они имеют высокое быстродействие в отличие от диодов расположенных на входе устройства.

Благодаря малому времени восстановления, менее 50 наносекунд, приборы успевают переключать высокочастотный ток на выходе вторичной обмотки.

В данном приборе используются сдвоенные диоды марок STTH6003CW, FFH30US30DN или VS-60CPH03, рассчитаны на прямой ток 30 ампер на один прибор (60 ампер на оба) и обратное напряжение 300 вольт.

Устанавливаются на радиатор. Для защиты полупроводников от перегрузки используется RC фильтр. Схема управления требует стабильный источник питания без бросков напряжения.

Для этого в приборе предусмотрены стабилитроны или уже готовый интегральный стабилизатор, которые обеспечивают стабильное питание на микросхемах управления. В результате получается компактное устройство, позволяющее качественно варить металл.

Менее известны полномостовые трёхфазные выпрямители по схеме «три параллельных моста» (на двенадцати диодах), «три последовательных моста» (на двенадцати диодах), и др., которые по многим параметрам превосходят выпрямитель Ларионова А.Н.

По схемам выпрямителей можно видеть, что выпрямитель Миткевича В. Ф. является «недостроенным» выпрямителем Ларионова А.Н., а выпрямитель Ларионова А.Н. является «недостроенным» выпрямителем «три параллельных моста».

Читайте также:  Диски для дисковой пилорамы

Вид ЭДС на входе (точками) и на выходе (сплошной).

Площадь под интегральной кривой равна:

.

Средняя ЭДС равна: , то есть такая же, как и в схеме «треугольник-Ларионов» и в раз меньше, чем в схеме «звезда-Ларионов».

В режиме холостого хода ЭДС в мосту с наибольшей на данном отрезке большого периода ЭДС обратносмещает (закрывает) диоды в мостах с меньшими на данном отрезке большого периода ЭДС. Эквивалентное внутреннее активное сопротивление при этом равно сопротивлению одного моста При увеличении нагрузки (уменьшении ) появляются и увеличиваются отрезки периода на которых два моста работают на нагрузку параллельно, эквивалентное внутреннее активное сопротивление на этих отрезках периода при этом равно сопротивлению двух параллельных мостов При дальнейшем увеличении нагрузки появляются и увеличиваются отрезки периода на которых все три моста работают на нагрузку параллельно, эквивалентное внутреннее активное сопротивление на этих отрезках периода равно сопротивлению трёх параллельных мостов В режиме короткого замыкания все три параллельных моста работают на нагрузку, но полезная мощность в этом режиме равна нулю.

Выпрямитель «три параллельных полных моста» на холостом ходу имеет такую же среднюю ЭДС, как в выпрямителе «треугольник-Ларионов» и такие же сопротивления обмоток, но, так как у него схема с независимыми от соседних фаз диодами, то моменты переключения диодов отличаются от моментов переключения диодов в схеме «треугольник-Ларионов». Нагрузочные характеристики этих двух выпрямителей получаются разными.

Частота пульсаций равна , где — частота сети.

Абсолютная амплитуда пульсаций равна .

Относительная амплитуда пульсаций равна .

Три полных моста последовательно (12 диодов)

Площадь под интегральной кривой равна:

Средняя ЭДС равна: , то есть вдвое больше, чем в схеме «треугольник-Ларионов».

Эквивалентное внутреннее активное сопротивление равно сопротивлению трёх последовательно включенных мостов с сопротивлением 3*r каждый, то есть .

Ток в нагрузке равен

Мощность в нагрузке равна

Частота пульсаций равна , где — частота сети.

Этот выпрямитель имеет наибольшую среднюю ЭДС и может найти применение в высоковольтных источниках напряжения (в установках электростатической очистки промышленных газов (электростатический фильтр) и др.).

Рассмотренные схемы выпрямления переменно­го тока позволяют получать выпрямленное, но пуль­сирующее напряжение. Для питания электронных приборов пульсирующее напряжение непригодно: оно создает фон переменного тока, вызывает иска­жения сигналов и приводит к неустойчивой работе приборов. Для устранения пульсаций (сглаживания) применяют сглаживающие фильтры. Сглаживающий фильтр состоит из реактивных элементов: конденсаторов и катушек индуктивнос­ти (дросселей). Сущность работы сглаживающего фильтра состоит в разделении пульсирующего тока i(t) на постоянную /о и переменную ^ составляю­щие (рис. 12.9). Постоянная составляющая направ­ляется в нагрузку, а нежелательная переменная замыкается через конденсатор, минуя нагрузку.

Физическая сущность работы в фильтре конден­сатор» и дросселя состоит в том, что конденсатор (обычно большой емкости), подключенный парал­лельно нагрузке, заряжается при нарастании импуль­сов выпрямленного напряжения и разряжается при их убывании, сглаживая тем самым ого пульсации. Дроссель, наоборот, при нарастании импульсов спрямленного тока в результате действия ЭДС само­индукции задерживает рост тока, а при убывании импульсов задерживает его убывание, сглаживая пульсации тока в цепи нагрузки. С другой стороны, конденсатор и дроссель можно рассматривать как не­кие резервуары энергии. Они запасают ее, когда ток в цепи нагрузки превышает среднее значение, и отдают, когда ток стремится уменьшиться ниже среднего значения. Это и приводит к сглаживанию пульсаций.

52 ,Интегральная схема, микроминиатюрное электронное устройство, все или часть элементов которого нераздельно связаны конструктивно и соединены между собой электрически. Различают 2 основных типа И. с.: полупроводниковые (ПП) и плёночные. ПП И. с. изготавливают из особо чистых ПП материалов (обычно кремний, германий), в которых перестраивают саму решётку кристаллов так, что отдельные области кристалла становятся элементами сложной схемы. Маленькая пластинка из кристаллического материала размерами

1 мм2 превращается в сложнейший электронный прибор, эквивалентный радиотехническому блоку из 50-100 и более обычных деталей. Он способен усиливать или генерировать сигналы и выполнять многие другие радиотехнические функции. Технология изготовления ПП И. с. обеспечивает одновременную групповую обработку сразу большого количества схем. Это определяет в значительной степени идентичность схем по характеристикам. ПП И. с. имеют высокую надёжность за счёт использования планарного процесса изготовления и значительного сокращения числа микросоединений элементов в процессе создания схем. ПП И. с. развиваются в направлении всё большей концентрации элементов в одном и том же объёме ПП кристалла, т. е. в направлении повышения степени интеграции И. с. Разработаны И. с., содержащие в одном кристалле сотни и тысячи элементов. В этом случае И. с. превращается в большую интегральную систему (БИС), которую невозможно разрабатывать и изготовлять без использования электронных вычислительных машин высокой производительности. Плёночные И. с. создаются путём осаждения при низком давлении (порядка 1 10-5 мм рт. ст.) различных материалов в виде тонких (толщиною 1 мкм) плёнок на нагретую до определённой температуры полированную подложку (обычно из керамики). В качестве материалов применяют алюминий, золото, титан, нихром, окись тантала, моноокись кремния, титанат бария, окись олова и др. Для получения И. с. с определёнными функциями создаются тонкоплёночные многослойные структуры осаждением на подложку через различные маски (трафареты) материалов с необходимыми свойствами. В таких структурах один из слоев содержит микрорезисторы, другой — микроконденсаторы, несколько следующих — соединительные проводники тока и другие элементы. Все элементы в слоях имеют между собой связи, характерные для конкретных радиотехнических устройств. Плёночные элементы распространены в гибридных И. с. В этих схемах на подложку сначала наносятся в виде тонких или толстых плёнок пассивные элементы (резисторы, конденсаторы, проводники тока), а затем с помощью микроманипуляторов монтируют активные элементы — бескорпусные ПП микроэлементы (транзисторы и диоды). По своим конструктивным и электрическим характеристикам ПП и гибридные И. с. дополняют друг друга и могут одновременно применяться в одних и тех же радиоэлектронных комплексах. В целях защиты от внешних воздействий И. с. выпускают в защитных корпусах. По количеству элементов различают И. с.: 1-й степени интеграции (до 10 элементов), 2-й степени интеграции (от 10 до 100) и т. д. Размеры отдельных элементов И. с. очень малы (порядка 0,5-10 мкм) и подчас соизмеримы с размерами пылинок (1-100 мкм). Поэтому производство И. с. осуществляется в особо чистых условиях Создание И. с. развивается по нескольким направлениям: гибридные И. с. с дискретными активными элементами; ПП И. с., выполненные в монолитном блоке ПП материала; совмещенные И. с., в которых активные элементы выполнены в монолитном блоке ПП материала, а пассивные элементы нанесены в виде тонких плёнок; плёночные И. с., в которых активные и пассивные элементы нанесены на подложку в виде тонких плёнок.

Читайте также:  Треугольник заземления размеры для частного дома

51. Усилителем называется электронное устройство, позволяющее преобразовывать входные электрические сигналы в сигналы большей мощности на выходе. Это преобразование совершается за счет энергии источника питания. Усилитель предназначен для увеличения параметров электрического сигнала: напряжения Uвх, тока Iвх, мощности Pвх. Основными параметрами усилителя являются:

а) коэффициент усиления по напряжению Ku = ——;

Все усилители делятся на два класса — с линейными и нелинейными режимами работы (линейные и нелинейные усилители). К линейным усилителям предъявляется требование минимального искажения усиливаемого сигнала. Коэффициенты усиления линейного усилителя рассчитываются по амплитудным или действующим значениям (для синусоидального сигнала) напряжения и тока.

Важнейшим показателем линейного усилителя является его амплитудно-частоная характеристика (АЧХ), отражающая зависимость модуля коэффициента усиления Ku, определенного для синусоидального сигнала, от частоты. В зависимости от вида АЧХ линейные усилители делятся на усилители постоянного тока (УПТ) с рабочим диапазоном частот fp от 0 до 10 3 …10 8 Гц, усилители звуковых частот (УЗЧ) с fp от десятков герц до 15…25кГц, усилители высоких частот (УВЧ) с fp от десятков килогерц до сотен мегагерц, широкополосные усилители (ШПУ) с fp от десятков герц до сотен мегагерц и узкополосные (избирательные) усилители (УПУ) с узкой полосой fp.

Рабочий диапазон частот усилителя ограничен верхней и нижней граничными частотами fв и fн. Граничные частоты определяются по АЧХ, когда Ku снижается в 2 раз по отношению к Ku0 на средней частоте f.

Нелинейные усилители характеризуются зависимостью коэффициента усиления от величины усиливаемого сигнала.

В зависимости от того, какой параметр является определяющим, усилители делятся на усилители напряжения, усилители тока, усилители мощности.

По типу связи между каскадами различают усилители с гальванической связью (характерно для УПТ); усилители с RC-связью, где разделительным элементом между каскадами является конденсатор; усилители с трансформаторной связью; усилители со связью через колебательный контур.

Показатели усилительных каскадов зависят от способа включения транзистора, выполняющего роль управляемого элемента.

Расчет усилительного каскада состоит из двух этапов:

а) анализ (расчет) каскада по постоянному току;

б) анализ (расчет) каскада по переменному току.

Первый этап выполняют графо-аналитическим методом, в результате чего определяются параметры элементов схемы, предназначенные для обеспечения параметров режима покоя.

На втором этапе решается задача определения основных показателей усилителя: Ku, Ki,Kp, Rвх, Rвых. Основной метод расчета на втором этапе заключается в замене транзистора и всего каскада его схемой замещения по переменному току.

Определим основные параметры каскада по данной схеме замещения.

Входное сопротивление каскада определяется из выражения

rб — объемное сопротивление базы;

rэ — дифференциальное сопротивление эмиттерного перехода;

Отправить ответ

  Подписаться  
Уведомление о
Adblock
detector