Приборы для измерения избыточного давления

Давление — это физическая величина, характеризующая напряжённое состояние среды (жидкой или газообразной. Давление возникает в результате действия силы на поверхность тела. Оно определяет термодинамическое состояние веществ. Давлением во многом определяется ход технологического процесса, состояние технологических аппаратов и режимы их функционирования. С задачей измерения давления приходится сталкиваться в измерениях некоторых технологических параметров, например расхода газа или пара, при изменяющихся термодинамических параметрах, уровня жидкости, и др. Повышенное или пониженное давление (несоблюдение режима) в ходе технологического процесса в каком-либо аппарате может привести к потере качества продукта на конечной стадии процесса.

По Международной системе единиц (СИ), единицей измерения давления принят паскаль (Па) — давление, создаваемое силой в 1 ньютон (Н), равномерно распределенной по поверхности площадью 1м² и направленной нормально к ней. Для технических измерений была принята техническая атмосфера, равная давлению, которое производит сила в 1 кгс (9,80665 н) на площадь в 1 см². Разнообразие видов измеряемых давлений, а также областей их применения в технологии обусловило использование наряду с системной единицей давления и внесистемных единиц. К их числу относятся бар, миллиметр ртутного столба, килограмм-сила на квадратный сантиметр, килограмм — сила на квадратный метр, миллиметр водяного столба.

Приборы давления применяются для контроля и управления технологическими процессами. Это устройства служат для прямого или косвенного сравнения измеряемой величины с мерой. На промышленных установках наиболее распространены манометры избыточного давления, имеющие обычно нулевую точку отсчета (от атмосферного давления). Применяются и узкопредельные манометры — манометры с безнулевой шкалой.

Напоромеры — это манометры избыточного давления в газовых средах с верхним пределом измерения не более 40 кПа.

Вакуумметры — это приборы для измерения давления разреженного газа.

Тягомеры — это вакуумметры для измерения давления разреженного газа с верхним пределом измерения не более — 40 кПа.

Мановакуумметры — предназначенных для измерения избыточного давления и давления разреженного газа.

Тягонапоромеры — это мановакуумметры для газовых сред с верхним пределом измерения не более 20 кПа.

Дифманометры — это приборы измеряющие разность двух давлений.

Манометры применяют для измерения постоянных и переменных по направлению давлений.

Постоянным давлением — считают давление, не изменяющееся или плавно изменяющееся по времени со скоростью не более 1% / cек. от суммы верхних пределов измерений приборов.

Переменным давлением — считают давление, плавно и многократно возрастающее или убывающее по любому периодическому закону со скоростью от 1 до 10% /с от суммы верхних пределов измерений.

По принципу действия средства измерений давления подразделяются на следующие:

Жидкостные — основанные на уравновешивании измеряемого давления соответствующего столба жидкости.

Деформационные (пружинные) — измеряющие давление по величине деформации упругих различных элементов или по развиваемой ими силе.

Грузопоршневые — в которых измеряемое давление уравновешивается внешней силой, действующей на поршень.

Электрические — основанные или на преобразовании давления в одну из электрических величин, или на изменении электрических свойств материала под действием давления. Такое подразделение не является полным и может быть дополнено средствами измерений, основанными на других физических явлениях.

Жидкостные средства измерений давления с гидростатическим уравновешиванием.

В жидкостных приборах с гидростатическим уравновешиванием мерой измеряемого давления является высота столба рабочей жидкости. В качестве рабочей жидкости, называемой затворной или манометрической, применяются дистиллированная вода, ртуть, этиловый спирт, трансформаторное масло. Выбор рабочей жидкости определяется диапазоном измеряемого давления, условиями эксплуатации и требуемой точностью измерений.

В настоящее время номенклатура жидкостных средств измерений давления с гидростатическим уравновешиванием существенно ограничена. В большинстве случаев они заменены более совершенными деформационными средствами измерений.

К числу жидкостных средств измерений давления (разности давлений и разряжения) с гидростатическим уравновешиванием, ещё применяются на технологических потоках, относятся поплавковые и колокольные дифманометры. Принцип действия поплавковых дифманометров основан на уравновешивании измеряемого перепада давления гидростатическим давлением, создаваемым столбом рабочей жидкости, заполняющей дифманометр. Поплавковый дифманометр представляет собой два сообщающихся сосуда. Площадь одного сосуда значительно больше другого. Внутренняя полость сообщающихся сосудов заполняется рабочей жидкостью (ртутью или трансформаторным маслом) до нулевой отметки. О значение измеряемой разности давлений судят по отсчетному устройству, указатель которого механически связан с поплавком, расположенным в полости широкого сосуда.

Поплавковые дифманометры рассчитаны на номинальные перепады давления, верхние пределы которых ограничены значениями от 6,3 кПа до 0,10 кПа. Такие дифманометры используются при статических давлениях измеряемой среды не более 25 МПа. Класс точности 1,0 и 1,5.

Поплавковые дифманометры рассчитаны на номинальные перепады давления, верхние пределы которых ограничены значениями от 6,3 кПа до 0,10 кПа. Такие дифманометры используются при статических давлениях измеряемой среды не более 25 МПа. Класс точности 1,0 и 1,5.

Колокольные дифманометры этого типа представляю собой колокол, погруженный в рабочую жидкость и перемещающийся под влиянием разности давлений. Противодействующая сила создается за счет утяжеления колокола при его подъеме и уменьшении тяжести колокола при его погружении. Достигается это за счет изменения гидростатической подъемной силы, действующей на колокол согласно закона Архимеда.

Колокольные дифманометры с гидростатическим уравновешиванием обладают высокой чувствительностью и использовались для измерения малых давлений, перепадов давлений и разряжений.

Деформационные средства измерений давления.

Высокая точность, простота конструкции, надежность и низкая стоимость являются основными факторами, обуславливающими широкое распространение деформационных приборов для измерения давления в промышленности. Эти приборы предназначены для измерения избыточного давления и разряжения неагрессивных жидких и газообразных сред.

Принцип действия деформационных средств измерений давления основан на использовании упругой деформации чувствительного элемента или развиваемой им силы. Мерой измеряемого давления в средствах измерений данного типа является деформация упругого элемента или развиваемая им сила. Наибольшее распространение в практике измерений получили три основные формы чувствительных элементов: трубчатые пружины, сильфоны и мембраны.

Трубчатая пружина (пружина Бурдона) — упругая криволинейная металлическая полая трубка, один из концов которой имеет возможность перемещаться, а другой — жестко закреплен. Трубчатые пружины используются в основном для преобразования измеряемого давления, поданного во внутреннее пространство пружины, в пропорциональное перемещение ее свободного конца. Наиболее распространена одновитковая трубчатая пружина, представляющая собой изогнутую по дуге окружности трубку с обычно овальным поперечным сечением. Под влиянием поданного избыточного давления трубка раскручивается, а под действием разряжения скручивается. Для передачи перемещения свободного конца деформационного чувствительного элемента к указателю манометра используют секторные и рычажные передаточные механизмы. С помощью передаточного механизма перемещение свободного конца трубчатой пружины в несколько градусов или миллиметров преобразуется в угловое перемещение стрелки на 270 — 300 г.

Манометры имеют разные шкалы в зависимости от контролируемого параметра и градуируются в кгс/ cм2. Рабочая зона манометра находится на средине шкалы и должна быть не более 2/3 от шкалы. Для отсчета показаний во многих приборах имеются отсчетные приспособления (чаще всего шкала или указатель). Шкала — это совокупность отметок, расположенных вдоль какой — либо линии или по окружности (манометры), которые изображают ряд последовательных чисел, соответствующих значениям измеряемой среды. Значение измеряемой величины, соответствующее одному делению, называют ценой деления шкалы. Указатель шкалы представляет собой в большинстве случаев стрелку, позволяющую отсчитывать по шкале значение измеряемой величины. На шкале обычно указывают класс точности прибора.

Сильфон — тонкостенная цилиндрическая оболочка с поперечными гофрами способная получать значительные перемещения под действием давления или силы. При действии осевой нагрузки, внешнего или внутреннего давления длина сильфона изменяется, увеличиваясь или уменьшаясь в зависимости от направления приложенной силы. В значительных пределах деформация сильфона пропорциональна действующей силе, т. е. характеристика сильфона прямолинейна. В пределах линейности статической характеристики сильфона отношение действующей на него силы к вызванной ею деформации остается постоянным и называется жёсткостью сильфона. Для увеличения жесткости внутри сильфона часто помещают пружину. Сильфоны изготовляют из бронзы различных марок, углеродистой стали, нержавеющей стали, алюминиевых сплавов и др. Серийно производят бесшовные и сварные сильфоны диаметром от 8 — 10 до 80 — 100 мм и толщиной стенки 0,1 — 0,3мм.

Приборы этого типа предназначены для измерения избыточного давления, разряжения и разности давлений.

Мембраны бывают упругие и эластичные. Упругая мембрана — гибкая круглая плоская (плоская мембрана) или гофрированная (гофрированная мембрана) пластина, способная получить прогиб под действием давления. Статическая характеристика плоских мембран изменяется нелинейно с увеличением давления, поэтому здесь в качестве рабочего участка используют небольшую часть возможного хода. Гофрированные мембраны могут применяться при больших прогибах, чем плоские, так как имеют значительно меньшую нелинейность характеристики. Мембраны изготавливают, из различных марок стали, бронзы, латуни и т. д. Эластичная мембрана, предназначена для измерения малых давлений и разности давлений, представляет собой зажатые между фланцами плоские или гофрированные диски, выполненные из прорезиненной ткани, тефлона и др.

Измерительные приборы с чувствительным мембранным элементом предназначены для измерения атмосферного и избыточного давлений и разряжения. Из-за малости усилий, развиваемых чувствительным деформационным элементом, мембранные приборы выпускаются в основном показывающими. Принцип действия приборов состоит в преобразовании измеряемого давления или разряжения в перемещение жесткого центра чувствительного мембранного элемента, которое с помощью передаточного механизма преобразуется во вращательное движение указателя.

Грузопоршневые манометры.

Грузопоршневые манометры — в основном применяются в качестве эталонных и образцовых приборов для градуировки и поверки различных видов пружинных манометров, так как они отличаются от манометров других видов высокой точностью и широким диапазоном измерений.

Принцип действия состоит в уравновешивании давления, действующего на поршень с одной стороны, давлением грузов с другой стороны.

Электрические средства измерений давления.

К электрическим средствам измерения давления относятся выпускаемые в настоящее время измерительные преобразователи давления, основанные на методе прямого преобразования, различаются как видом деформационного чувствительного элемента, так и способом преобразования его перемещения или развиваемого им усилия в сигнал измерительной информации. Для преобразований применяются индуктивные, дифференциально- трансформаторные, емкостные, тензорезисторные и др. преобразовательные элементы. Преобразование усилия, развиваемого чувствительным элементом, в сигнал измерительной информации осуществляется пьезоэлектрическими элементами.

Индуктивные преобразователи давления — мембрана воспринимающая давление, является подвижным якорем электромагнита. Под действием измеряемого давления мембрана перемещается, что вызывает изменение электрического сопротивления индуктивного преобразовательного элемента.

Эта величина измеряется обычно мостами переменного тока или резонансными контурами. с последующим отображением на шкале прибора.

Дифференциально — трансформаторный преобразователь — содержит деформационный чувствительный элемент и деформационно — трансформаторный преобразователь. Дифференциально — трансформаторный преобразователь содержит каркас из диэлектрика, на котором размещены катушка с первичной обмоткой, состоящей из двух секций и двух секций вторичной обмотки. Внутри канала катушки расположен подвижный сердечник из магнитомягкого материала, связанный с пружиной тягой. К выходу вторичной обмотки подключен делитель, состоящий из регулируемого и постоянного резисторов. Принцип действия основан на возникновении магнитного потока, пронизывающего обе секции вторичной обмотки и индуцирующие в них ЭДС, при протекании по первичной обмотке токового сигнала. Выходной сигнал определяется взаимной индуктивностью между первичной обмоткой и выходной цепью и может быть представлен в виде сигнала напряжения переменного тока. Преобразование измеряемого давления осуществляется путем преобразования давления в деформацию (перемещение) чувствительного элемента и последующего преобразования в электрический сигнал, приходящий на показывающий прибор в операторной.

Емкостной преобразователь — измерение давления основано на зависимости емкости преобразовательного элемента от перемещения мембраны под действием измеряемого давления. Преобразователь состоит из металлической мембраны, являющейся подвижным электродом емкостного преобразовательного элемента и неподвижного электрода изолированного от корпуса с помощью кварцевых изоляторов.

Тензорезисторные преобразователи — это приборы оснащенные преобразовательными элементами тензорезисторного типа и получили название тензорезисторных измерительных преобразователей давления. Преобразователи давления этого вида представляют собой чувствительный деформационный элемент, чаше всего мембрану, на которую наклеиваются или напыляются тензорезисторы (тензодатчик). В основе принципа лежит явление тензоэффекта, суть которого состоит в изменении сопротивления проводников и полупроводников при их деформации. Под воздействием измеряемого давления деформируемый упругий элемент вызывает пропорциональное изменение электрического сопротивления тензорезисторов, собранных по мостовой схеме, которое в дальнейшем преобразуется и усиливается для формирования унифицированного аналогового выходного сигнала (4 – 20 мА).

Читайте также:  Тиски для стойки для дрели энкор 20090

Системы измерения давления сред на современных автоматизированных производствах используют в качестве первичных преобразователей измерительные преобразователи (датчики) давления с выходными электрическими токовыми сигналами.

Эти датчики по сравнению с показывающими манометрами имеют значительно более высокий класс точности, более трудоемки в наладке, при проверке требуют применения образцовых высокоточных средств измерения на входе и выходе.

На рисунке представлена схема электрического соединения оборудования КИП, обеспечивающего контроль давления на технологической установке.

Преобразователь давления устанавливается во взрывоопасном помещении или в специальном шкафу на территории технологической установки. Они как правило, не имеют шкалы, позволяющей непосредственно оценить давление, а преобразуют его в электрический сигнал. Измеряемое давление воздействующее на тензодатчик, преобразуется электронным блоком в токовый сигнал, который передается по искробезопасной двухпроводной линии передачи к терминальному оборудованию и блоку питания, находящимся во невзрывоопасном (операторная или машинный зал) помещении.

Блок питания обеспечивает по той же линии питание первичного преобразователя (датчика давления) и терминального оборудования.

Приборы для измерения давления могут классифицироваться по следующим характеристикам:

· виду измеряемого давления;

По виду измеряемого давления приборы подразделяются на следующие:

Согласно ГОСТ 8.271-77 манометр – это измерительный прибор или измерительная установка для измерения давления или разности давлений.

Для измерения абсолютного давления, т.е. которое считывается от абсолютного нуля выпускаются манометры абсолютного давления; избыточного – манометры избыточного давления, и наиболее часто «по умолчанию» эти разновидности приборов называют манометрами.

Большинство выпускаемых манометров применяются для измерения избыточного давления. и х отличительным признаком является показание «нуля» прибора при воздействии на чувствительный элемент атмосферного давления.

Измерение давления разряженного газа производят вакуумметрами. Соответственно вакуумметр – это манометр для измерения давления разряженного газа/10/.

Манометр, имеющий возможность измерять давление разряженного газа и избыточное давление (у прибора единая шкала), называют мановакуумметрами.

Измерение малых значений (до 40 кПа) избыточного давления производится напоромерами, хотя такое название, как и такое подразделение по виду измеряемого давления (для малых значений) за рубежом отсутствует. Тягомеры используются для измерения малого (до –40 кПа) вакуумметрического давления. Приборы, имеющие часть шкалы вакуумметрического, а часть избыточного давления в пределах ±20 кПа, называются тягонапоромерами. Европейские стандарты ( EN 837-1, EN 837-2 и EN 837-3/7,9/) такое разделение производят по виду чувствительного элемента – трубчатый ( Bourdon tube — Rohrfedern ) и мембранный – мембранная коробка – капсула ( Diaphragm – Plattenfeder или Capsule — Kapselfeder ).

Приборы, предназначенные для измерения разности давлений в двух произвольных точках, именуют дифференциальными манометрами (дифманометрами). Причем это название в большей степени применимо для показывающих приборов. Устройства измерения дифференциального давления с унифицированным выходным сигналом называют измерительным преобразователем разности давлений/11/.

Дифманометр, функционально обеспечивающий измерение малых значений разности двух давлений, и имеющий верхний предел измерения не более 40 кПа (4000 кгс/м 2 ) называют микроманометром.

Контроль и измерение атмосферного давления производят барометрами.

В дальнейшем для упрощения изложения материала в непринципиальных моментах манометры, вакуумметры, мановакуумметры, напоромеры, тягомеры, тягонапоромеры объединены под названием манометры или манометрические приборы.

По принципу действия основную группу приборов для измерения давления можно подразделить на следующие:

· электрические и др.

К жидкостному относится манометр, принцип действия которого основан на уравновешивании измеряемого давления или разности давлений, давлением столба жидкости/10/.

К жидкостным относится U -образный манометр, состоящий из сообщающихся сосудов, в которых измеряемое давление определяют по одному или нескольким уровням жидкости.

В деформационном манометре от измеряемого давления зависит степень деформации чувствительного элемента или развиваемой им силы.

В состав деформационных входит трубчато-пружинный манометр, в котором чувствительным элементом является трубчатая пружина; сильфонный, функционирующий на основе сильфона, мембранный — на основе мембраны или мембранной коробки.

К деформационным отнесен манометр с вялой мембраной, в котором измеряемое давление воспринимается вялой мембраной и преобразуется в силу, уравновешиваемую дополнительным устройством.

В грузопоршневых приборах, имеющих, в большинстве случаев, в качестве рабочего тела жидкость и зачастую называемых жидкостными, измеряемое давление уравновешивается давлением, создаваемым весом поршня с грузоприемным устройством, и грузов с учетом сил жидкостного трения.

Электрические манометры функционируют по принципу зависимости одного из электрических параметров чувствительного элемента первичного преобразователя от давления.

По назначению , установившемуся в среде производственников, манометры подразделяются на следующие:

· общепромышленные, имеющие также название технических или рабочих;

· эталонные, включающие государственный первичный, рабочие и другие эталоны.

Общетехнические манометры предназначены для измерения давления непосредственно в ходе производственных процессов в рабочих точках промышленного оборудования.

Эталонные приборы используют для хранения и передачи размера единиц давления в целях единообразия, достоверности и обеспечения высокой точности его измерений.

В целях упорядочения отечественной метрологической терминологии и приближения ее к международной в нашей стране термин образцовое средство измерений заменен на термин рабочий эталон/6/. Рабочие эталоны подразделяют на разряды (1-й, 2-й, 3-й), как это было принято для образцовых средств (см. гл.7).

В промышленности встречаются контрольные манометры, которые применяются для контроля правильности показаний технических манометров на месте их установки. Термин «контрольные» специфичен для промышленных условий и не имеет места в законодательной метрологии настоящего времени, но широко использовался ранее. Вместо него сейчас используют термин «манометры повышенной точности».

По защищенности от воздействия окружающей среды приборы, согласно ГОСТ 12997-84/12/, подразделяют на следующие исполнения: обыкновенное; защищенное от попадания внутрь изделия твердых тел (пыли), защищенные от попадания внутрь изделия воды; защищенные от агрессивной среды; взрывозащищенные, защищенные от других внешних воздействий. Несколько видов защиты может сочетаться в одном изделии.

Изготавливаемые приборы должны быть устойчивыми и (или) прочными к воздействию температуры и влажности окружающего воздуха в диапазонах параметров, указанных в табл.1.2.

Группы исполнений технических изделий по устойчивости к температуре и влажности /12/

Диапазон температуры окружающего воздуха, о С

75 при 30 о С и более низких температурах без конденсации влаги

Обогреваемые и (или) охлаждаемые помещения без непосредственного воздействия солнечных лучей, осадков, ветра, песка и пыли, отсутствие или незначительное воздействие конденсации

90 при 30 о С и более низких температурах, без конденсации влаги

80 при 30 о С и более низких температурах, без конденсации влаги

100 при 30 о С и более низких температурах, с конденсацией влаги

Помещения с нерегулируемыми климатическими условиями и (или) навесы. Изделия могут быть влажными в результате конденсации, вызванной резкими изменениями температуры или в результате воздействия заносимых ветров осадков и капающей воды

95 при 35 о С и более низких температурах, без конденсации влаги

100 при 40 о С и более низких температурах c конденсацией влаги

Открытое пространство. Изделия подвергаются воздействию атмосферных осадков (непосредственный нагрев солнечными лучам, ветер, дождь, снег, град, обледенение). Могут появляться резкие изменения температуры, изделия могут быть влажными в результате конденсации, воздействия осадков, брызг, утечек

95 при 35 о С и более низких температурах, без конденсации влаги

Приборы должны быть устойчивыми и (или) прочными к воздействию синусоидальных вибраций высокой частоты с параметрами, по группе исполнения выбираемых из табл.1.3.

Группы исполнения по устойчивости

к воздействию синусоидальных вибраций/12/

смещения для частоты ниже частоты перехода**, мм

ускоре-ния для частоты выше частоты перехо- да,м/с 2

Места, защищенные от существенных вибраций. Могут появляться вибрации только низкой частоты

Места, подтвержденные вибрации от работающих механизмов. Типовое размещение на промышленных объектах

Места на промышленных объектах при условии, что существует вибрация с частотой, превышающей 55 Гц

Места, расположенные вблизи помещений, в которых установлены работающие авиационные двигатели

Места, расположенные вблизи помещений, в которых установлены работающие авиационные двигатели

* По требованию потребителя

** Частота перехода – 57-62 Гц.

Общетехнические манометры конструктивно предусматривают устойчивость к вибрациям с частотой 10…55 Гц и амплитудой смещения до 0,15 мм.

Система кодификации по защите приборов от попадания внутрь изделия твердых тел (пыли), а также воды устанавливается ГОСТ 14254-96/13/. Для такой кодификации применяется обозначение « IP ».

Обозначение « IP » ( International Protection – Международная защита) принято Международной Электрической Комиссией (МЭК) в качестве стандарта защиты изделий (МЭК 529–89).

После обозначения « IP » является обязательным указание двух характеристических цифр. Первая характеристическая цифра (от 0 до 6) обозначает, как показано в табл. 1.4, степень защиты от попадания внутрь твердых посторонних тел.

Степени защиты от внешних предметов, обозначаемых первой характеристической цифрой (ГОСТ 14254–96)/13/

Защищено от внешних твердых предметов диаметром больше или равным 50 мм

Щуп-предмет – сфера диаметром 50 мм – не должен проникать полностью*

Защищено от внешних твердых предметов диаметром больше или равным 12,5 мм

Щуп-предмет – сфера диаметром 12,5 мм – не должен проникать полностью*

Защищено от внешних твердых предметов диаметром больше или равным 2,5 мм

Щуп-предмет – сфера диаметром 2,5 мм – не должен проникать ни полностью, ни частично*

Защищено от внешних твердых предметов диаметром больше или равным 1,0 мм

Щуп-предмет – сфера диаметром 1,0 мм – не должен проникать ни полностью, ни частично*

Проникновение пыли исключено не полностью, однако пыль не должна проникать в количестве, достаточном для нарушения нормальной работы оборудования или снижения его безопасности

Пыль не проникает в оболочку

*Наибольший диаметр щупа-предмета не должен проходить через отверстие в оболочке.

Вторая характеристическая цифра обозначает степень защиты, обеспечиваемую корпусом прибора в отношении вредного воздействия на работу измерителя в результате проникновения воды.

Для испытаний на соотношение второй характеристической цифре проводят на пресной воде. Испытания на воде высокого давления или растворителях не представительны.

В табл.1.5 приведены краткое описание и определение защиты для каждой степени, представленной второй характеристической цифрой.

Степени защиты от воды, обозначаемых с помощью второй характеристической цифры (ГОСТ 14254–96)/13/

Защищено от вертикально падающих капель воды

Вертикально падающие капли воды не должны оказывать вредного воздействия

Защищено от вертикально падающих капель воды, когда оболочка отклонена на угол до 15 о

Вертикально падающие капли воды не должны оказывать вредного воздействия, когда оболочка отклонена от вертикали на угол до 15 о включительно

Защищено от воды, падающей в виде дождя

Вода, падающая в виде брызг в любом направлении, составляющем угол до 60 о включительно с вертикалью, не должна оказывать вредного воздействия

Защищено от сплошного обрызгивания

Вода, падающая в виде брызг на оболочку с любого направления, не должна оказывать вредного воздействия

Защищено от водяных струй

Вода, направляемая на оболочку в виде струй с любого направления, не должна оказывать вредного воздействия

Защищено от сильных водяных струй

Вода, направляемая на оболочку в виде сильных струй с любого направления, не должна оказывать вредного воздействия

Защищено от воздействия при временном (непродолжительном) погружении в воду

Должно быть исключено проникновение воды внутрь оболочки в количестве, вызывающем вредное воздействие, при ее погружении на короткое время при стандартизованных условиях по давлению и длительности

Защищено от воздействия при длительном погружении в воду

Должно быть исключено проникновение воды в оболочку в количествах, вызывающих вредное воздействие, при ее длительном погружении в воду при условиях, согласованных между изготовителем и потребителем, однако более жестких, чем условия для цифры 7.

Перечисленные в табл.1.4 и табл.1.5 степени защиты следует нормировать, как указывает ГОСТ 14254-96/13/, только с использованием характеристических чисел, а не с помощью краткого описания или определения.

Так, например, некоторые общетехнические показывающие манометры имеют степень защиты IP 40, что указывает на невозможность попадания в условиях эксплуатации внутрь корпуса механических частиц диаметром более 1 мм. Но корпус прибора не имеет защиты от воздействия воды.

Читайте также:  Асинхронный двигатель с короткозамкнутым и фазным ротором

Европейские нормы, как и ГОСТ 14254–96, базируются на едином положении МЭК 529-89, что обеспечивает идентичность маркировки по IP как у нас в стране, так и за рубежом.

Диапазон показаний манометрических приборов должен выбираться из ряда, приведенного в табл. 1.6 (ГОСТ 2405–88/4/), и в технических условиях (ТУ) на прибор конкретного типа.

Этим ГОСТом допускается по заказу потребителя изготавливать приборы с диапазоном показаний, отличным от указанных в табл. 1.6.

Пределы измерения для

манометрических приборов согласно ГОСТ 2405-88/4/

Диапазон показаний (записи) давления

избыточного и вакуумметрического

В единицах Па (кгс/м 2 )

От 0 до 160 (от 0 до 16)

От -60 до 100 (от –6 до 10)

» -100 » 150 (» -10 » 15)

» -125 » 125 (» -12,5 » 12,5)

» -150 » 250 (» -15 » 25)

» -200 » 200 (» -20 » 20)

» -300 » 300 (» -30 » 30)

От -160 до 0 (от -16 до 0)

» -4 00 » 0 ( » — 40 » 0)

» — 600 » 0 ( » — 60 » 0)

В единицах кПа (кгс/м 2 )

От 0 до 1 (от 0 до 100)

От –0,4 до 0,6(от -40 до60)

» -1 » 1,5 (» -100 » 150)

»-1,25 » 1,25 (» -125 » 125)

»-1,5 » 1 (» -150 » 100)

»-1,5 » 2,5 (» -150 » 250)

» -2,5 » 1,5 (» -250 » 150)

» -6 » 10 (» -600 » 1000)

» -10 » 6 (» -1000 » 600)

»-15 » 10 (»-1500 » 1000)

» -20 » 20 (»-2000 » 2000)

В единицах кПа (кгс/ c м 2 )

От 0 до 60 (от 0 до 0,6)

От -20 до 40(от –0,2 до 0,4)

» -25 » 15 (» -0,25 » 0,15)

» -100 » 150 (» -1 » 1,5)

От -60 до 0(от –0,6 до 0)

В единицах МПа (кгс/ c м 2 )

От 0 до 1 (от 0 до 10)

» 0 » 100 (» 0 » 1000)

» 0 » 160 (» 0 » 1600)

» 0 » 250 (» 0 » 2500)

» 0 » 400 (» 0 » 4000)

» 0 » 600 (» 0 » 6000)

» 0 » 1000 (» 0 » 10000)

От –0,1 до 0,9 (от -1 до 9)

По заказу потребителя допускается изготовлять манометры с верхними пределами измерений 40; 60; 100; 160; 250; 400; 600 м вод. ст. и 1,2 МПа (12 кгс/ c м 2 ).

манометрических приборов согласно EN 837-1, EN 837-3/7,9/

Диапазоны измерений для положительных давлений в мбар:

От 0 до 1 от 0 до 10 от 0 до 100

От 0 до 1,6 от 0 до 16 от 0 до 160

От 0 до 2,5 от 0 до 25 от 0 до 250

От 0 до 4 от 0 до 40 от 0 до 400

От 0 до 6 от 0 до 60 от 0 до 600

Диапазоны измерений для вакуумметрических давлений в мбар:

От -1 до 0 от -10 до 0 от -100 до 0

От -1,6 до 0 от -16 до 0 от -160 до 0

От -2,5 до 0 от –25 до 0 от -250 до 0

От -4 до 0 от -40 до 0 от -400 до 0

От -6 до 0 от -60 до 0 от -600 до 0

Диапазоны измерений для положительных давлений в бар:

от 0 до 0,6 от 0 до 10 от 0 до 160

от 0 до 1 от 0 до 16 от 0 до 250

от 0 до 1,6 от 0 до 25 от 0 до 400

от 0 до 2,5 от 0 до 40 от 0 до 600

от 0 до 4 от 0 до 60 от 0 до 1000

от 0 до 6 от 0 до 100 от 0 до 1600

Диапазоны измерений для вакуумметрических давлений в бар:

от -0,6 до 0 от –1 до 0

Диапазоны измерений для положительных и вакуумметрических давлений в бар:

от –1 до +0,6 от –1 до +9

от –1 до +1,5 от –1 до +15

от –1 до +3 от –1 до +24

Европейская норма EN 837-3/9/ рекомендует при использовании единицы измерения Па в соответствующем диапазоне руководствоваться следующим положением:

— от 0 до 100…1000 Па – использовать Па;

— от 0 до 1,6…1000 кПа – кПа;

— от 0 до 1,6…2,5 МПа – МПа.

Рабочие диапазоны измерений избыточного давления отечественных манометрических приборов должен быть от 0 до 100 % или от 25 до 75 % диапазона показаний.

ГОСТ 2405-88/4/ регламентирует диапазон уставок приборов с сигнализирующим устройством:

от 5 до 95% диапазона показаний – для диапазона измерений от 0 до 100%;

от 25 до 75% диапазона показаний – для диапазона измерений от 25 до 75%.

Некоторые зарубежные производители пружинных манометров предусматривают использование манометрических приборов для пределов от 0 до 75 % диапазона показаний, и соответственно производят регулировку только на этом участке, чем обусловливается не вхождение этих приборов в класс точности на заключительном участке шкалы.

Отечественные производители обязаны обеспечивать выпуск приборов с соблюдением заявленного класса точности на всех обозначенных на циферблате прибора цифровых значениях.

Кроме того, поверку прибора отечественными метрологическими службами производят по восьми значениям давления классов точности 0,4 и 0,6 и не менее чем на пяти точках шкалы классов точности 1,0; 1,5; 2,5 и 4,0. Практически такие же требования предъявляются немецким стандартом. Метрологические службы некоторых предприятий зарубежных стран, как наблюдал автор, устанавливают для общетехнических манометров поверку по трем значениям давления, что сказывается на точности измерения.

Европейские нормы /7,9/ устанавливают соответствие заявленному классу точности диапазон шкалы прибора от 10 до 100 % для измерителей, на циферблате которых установлен упор и от 0 до 100 % для устройств с циферблатами без упора.

Для выпускаемых отечественными предприятиями манометров выбирают значения классов точности из ряда: 0,4; 0,6; 1,0; 1,5; 2,5; 4,0/4/. Манометрические приборы с классами точности 0,4 и 4,0 изготавливаются по заказу потребителя.

Согласно рекомендациям по межгосударственной стандартизации РМГ 29-99/6/, класс точности – это обобщенная характеристика данного типа средств измерений, как правило, отражающая уровень их точности, выражаемая пределами допускаемых основной и дополнительных погрешностей, а также другими характеристиками, влияющими на точность.

В большинстве случаев класс точности к принимается равным отношению абсолютной погрешности средства измерения D к нормирующему значению (верхнему пределу измерения S ), выраженному в процентах:

к = D / S × 100 %. (1.6)

ГОСТ 2405–88/4/ регламентирует для значений класса точности соответствующие пределы основной допускаемой погрешности (см. табл. 1.8), определяемой в процентах для манометров и вакуумметров от верхнего предела измерений и для мановакуумметров в процентах от абсолютного значения всего диапазона измерений.

Значения принятых классов точности/4/

Предел допускаемой
основной погрешности, %

Министерство образования Российской Федерации

Саратовский государственный технический университет

ДЛЯ ИЗМЕРЕНИЯ ДАВЛЕНИЯ

к выполнению лабораторной работы

для студентов специальностей

150400, 170500, 290300, 120100.

Измерительные манометры разделяют на два класса

В результате на практике происходит медленное, но значительное колебание давления после каждого изменения состояния и, следовательно, длительное время, необходимое для стабилизации давления. В частности, для установки оборудования используются поршневые насосы. Другим вариантом является зажимной насос, который служит не только источником давления, но также включает регулятор объема и сливной клапан.

Магнитомодуляционные приборы для измерения давления

Если требуется пневматическая калибровка в более высоком диапазоне давления, в качестве источника давления может использоваться бутылка азота под давлением. Усилители давления в обеих версиях проще. Их принцип основан на работе пары связанных поршней, причем каждый поршень имеет разный диаметр. Большим поршнем служит привод, меньший служит для желаемого сжатия газа. Эти устройства рассчитаны на питание от сжатого газа из компрессора или цилиндра: а часть сжатого газа при давлении 600-800 кПа предназначен для приведения в действие устройство и затем уходит в атмосферу, причем вторая часть поступает в камеру сжатия, где он усиливается до требуемого давления.

Методические указания к выполнению лабораторной работы.

Составили: Сунчаляев Фарид Тимерханович

Сизов Владимир Михайлович

Рецензент: Устинов Н.А.

ИЗУЧЕНИЕ ПРИБОРОВ ДЛЯ ИЗМЕРЕНИЯ ДАВЛЕНИЯ

Ц е л ь р а б о т ы: изучение устройства и принципа действия приборов

На выходе устройства газ доступен при соответствующем давлении и расходе. Более сложными устройствами являются ускорители газа. Опять же, это устройства, основанные на принципе сопряженной пары поршней разного диаметра. В случае газовых ускорителей, используемых в калибровке, движущей средой является один газ, из которого сжатый газ полностью разделен.

Регулятор объемного давления — это простое ручное устройство, которое обычно состоит из сильфона, ход которого управляется винтом. Сильфоны позволяют изменять объем газа в закрытой системе, тем самым достигая изменения давления. Вместо мехов иногда используется поршневой цилиндр. Однако регулятор объема может использоваться только тогда, когда стабильное количество газа закрывается в системе, т.е. когда вся система действительно герметична.

для измерения давления по схемам и наглядным пособиям.

Давлением называется сила воздействия жидкой среды на единицу ограничивающей ее поверхности. Давление является скалярной величиной.

Единицей давления в системе СИ является Паскаль. Внесистемные единицы давления — килограмм- сила на квадратный сантиметр (кгс/см 2) — атмосферное давление (ат), метры водяного столба (м..вод.ст), мм ртутного столба (мм. рт. ст.). Единицы давления связаны между собой следующим образом:

При настройке давления выравнивающий клапан закрывается, соединяя пространства с обеих сторон поршня. Перемещение поршня создает небольшую разницу между двумя давлениями, так что поршень не является напряженным и может легко перемещаться. Это устройство также может использоваться для создания разницы в давлении, необходимом для калибровки дифференциальных датчиков при большем статическом давлении.

Иными словами, можно легко регулировать тестовое давление с помощью прецизионного редукционного клапана. В этом случае постоянный воздушный поток может устранить утечку в тестовой системе. Однако необходимо проверить, не приводит ли поток воздуха к перепаду давления в соединительных шлангах, чтобы вызвать недопустимые ошибки калибровки.

1Па = 1 Н/м 2 , 1кгс/см 2 =98,07кПа, 1 м.вод.ст. = 9,807 кПа

1ат. = 98,07 кПа, 1мм.рт.ст. = 133,32 Па

Измеряемое давление подразделяется на абсолютное Р абс . , атмосферное Р ат . , избыточное Р изб . = Р абс . — Р ат и вакуум Р вак . = Р ат — Р абс

По назначению приборы для измерения давления подразделяются на четыре вида:

В этом контексте следует отметить, что некоторые стандарты также выполняют функцию регуляторов давления; Это в основном пневматические поршневые или шариковые подшипники, которые многие производители поставляют на наш рынок. Они в основном предназначены для зон низкого и среднего давления.

Удобной и технически усовершенствованной альтернативой редуктору являются саморегулируемые регуляторы давления, которые устанавливают выходное давление на желаемый уровень в соответствии с запрограммированной программой. Основной функциональный блок этого устройства представляет собой встроенный стандарт давления, который оперативно подключается через блок управления к паре регулирующих клапанов. Блок управления обеспечивает динамику режима управления в соответствии с выбранными требованиями. Для ускорения калибровки чаще всего требуется быстрое изменение регулируемого давления, но без превышения заданного значения.

1) Приборы для измерения атмосферного давления -барометры,

2) Приборы для измерения избыточного давления и вакуума.

Положительное избыточное давление измеряется манометрами. Приборы, измеряющие недостаток давления до атмосферного, т.е. вакуум, называются вакууметрами. Для измерения избыточного давления и вакуума используются мановакууметры.

3) Приборы для измерения абсолютного давления. Если абсолютное давление больше атмосферного, то оно равно сумме показаний манометра и барометра. Если абсолютное давление меньше атмосферного, то оно равно разности показаний барометра и вакуумметра.

4) Приборы для измерения разности давлений дифференциальные манометры.

Область применения приборов по назначению показана на рис.1.

По принципу действия приборы для измерения давления делятся на жидкостные, деформационные или пружинные, грузопоршневые, косвенные (электрические и комбинированные).

УСТРОЙСТВО И ПРИНЦИП ДЕЙСТВИЯ ПРИБОРОВ

Ж и д к о с т н ы е п р и б о р ы

Читайте также:  Как правильно заряжать шуруповерт первый раз

Принцип действия жидкостных приборов основан на уравновешивании измеряемого давления давлением столба жидкости. Мерой давления служит высота столба жидкости. Жидкостные приборы позволяют измерять атмосферное давление, вакуум, избыточное давление и разность давлений.

а) Пьезометр применяется для измерения избыточного давления и представляет собой вертикально установленную стеклянную трубку с открытым верхним концом, сообщающимся с атмосферой. Нижний конец трубки соединяется с резервуаром или трубкой, где измеряется давление (рис.2). Для отключения пьезометра устанавливается кран.

Величина избыточного давления Р изб. в рассматриваемой точке определяется по формуле:

где ρ – плотность жидкости, кг/м 3 ;

g – ускорение свободного падения, g = 9,81 м/с;

h — показание по шкале пьезометра, м;

h 0 – разность по вертикали между нулем шкалы и рассматриваемой

б) Дифференциальный манометр представляет собой U – образную стеклянную трубку, примерно наполовину заполненную рабочей жидкостью (рис.3). Открытые концы трубки присоединены с точками измерения давления. Под действием разности давления рабочая жидкость перетекает в сторону меньшего давления, и по шкале определяется разность уровней рабочей жидкости.

Разность давлений Р 1 – Р 2 определяется по формуле

где — плотность рабочей жидкости, кг/м 3 ;

— плотность жидкости, находящейся над рабочей жидкостью, кг/м 3 ;

— разность уровней рабочей жидкости по шкале, м;

1 – разность отметок точек измерения давления.

При 1 = 0, формула упрощается

В качестве рабочей жидкости в дифференциальных манометрах используется ртуть. При измерении небольших перепадов давления газов используется вода. В случае измерения небольших перепадов давления в трубах, заполненных водой, используются пьезометры, подключенные в точках измерения перепада давления.

На схеме пьезометра (Рис. 2.) цифрами обозначены: I — резервуар;

2 — стеклянная трубка; 3 — шкала; 4 — кран; 5 — соединительный шланг; 6 — штуцер.

На схеме жидкостного дифференциального манометра (Рис. 3.)

I — стеклянная трубка; 2 — соединительные шланги; 3 — штуцеры; 4 — трубы с различными давлениями.

Дифференциальный манометр может также использоваться в качестве манометра и вакуумметра. В этом случае один конец трубки сообщается с атмосферой.

Основными достоинствами жидкостных приборов для измерения давления являются простота устройства и высокая точность. Для увеличения чувствительности при измерениях малых давлений используются жидкости с малой плотностью. При невозможности применения жидкостей с малой плотностью для измерения давлений используются приборы с наклонной трубкой 2 и наклонной шкалой 3 (рис.4), в которых наполнение стеклянной трубки, зависит от угла наклона , измеряемого по неподвижной шкале. Избыточное давление Р в рассматриваемой точке определяется по формуле.

Чувствительность прибора увеличивается с уменьшением угла наклона трубки α.

На рис. 4. показан пьезометр с наклонной трубкой. Цифрами обозначены:

I — резервуар или труба; 2 — стеклянная трубка; 3 — шкала; 4 — шкала угломера.

Основной недостаток жидкостных приборов — малый диапазон изменяемых давлений. С увеличением диапазона измеряемого давления увеличивается длина стеклянных трубочек. Кроме того, во многих жидкостных приборах в качестве рабочей жидкости используется ртуть, пары которого, являются ядовитыми.

Простота устройства, стабильность показаний, высокая чувствительность определяет широкое применение жидкостных приборов в лабораторной практике, а также их применение для градуировки и тарировки других приборов для измерения давления.

Д е ф о р м а ц и о н н ы е п р и б о р ы

Принцип действия деформационных приборов основан на деформации упругого элемента под действием давления. Упругий элемент может быть выполнен в виде полой искривленной трубки, заглушенной с одной стороны, мембраны, сильфона. Мерой давления служит деформация упругого элемента. Упругий элемент должен сохранять постоянными свои характеристики при изменении температуры окружающей среды и жидкости в течение всего периода эксплуатации. Поэтому в наиболее ответственных случаях требуется периодическая тарировка этих приборов.

П р и б о р ы с т р у б ч а т о й п р у ж и н о й.

На рис. 5. показан деформационный прибор с трубчатой пружиной Основной деталью этих приборов является полая трубка, имеющая в сечении форму овала и согнутая по дуге окружности так, чтобы большая ось овала была перпендикулярна плоскости трубки. Один конец трубки запаян и свободен, а другой открытый конец трубки закреплен к корпусу 4 и к нему подводится измеряемое давление. Под действием давления трубка деформируется. В манометрах- разгибается, в вакуумметрах -скручивается, в той или иной степени, в зависимости от величины давления. При этом свободный конец трубки 3 перемещается в том или ином направлении и через передаточный механизм (5-поводок,6-зубчатый сектор) поворачивает стрелку 7 и по циферблату 6 прибора на угол, пропорциональный измеряемому давлению.

М е м б р а н н ы е п р и б о р ы.

Принцип действия мембранного прибора (рис.6) основан на прогибе упругой мембраны 1 под действием давления.

Через поводок 2 зубчат сектор 3 и шестеренку прогиб передается на стрелку 4 прибора, перемещающегося вдоль циферблата 5. Мембранный прибор может измерять избыточное давление и вакуум.

Пружинные приборы портативны, просты в устройстве и применимы, в большом диапазоне изменения давлении, однако вследствие изменения со временем свойств упругого элемента требуется периодическая тарировка этих манометров.

Пружинные манометры изготавливаются по следующим классам точности — 0,5; I; 1,5; 2,5; 4, что соответствует относительной, погрешности измерения в процентах.

Г р у з о п о р ш н е в ы е п р и б о р ы

Принцип действия грузопоршневых приборов основан на уравновешивании измеряемого давления, действующего на поршень внешней силой. Величина этой силы является мерой давления. Измеряемое давление определяется как отношение веса груза G к площади поршня S,

Грузопошневые приборы для измерения давления имеют высокую точность, но из-за высокой требовательности к условиям эксплуатации и громоздкости они используются для тарировки приборов с другим принципом действия.

Пр и б о р ы к о с в е н н о г о д е й с т в и я

Действие электрических приборов основано не изменении электрических свойств (пьезоэлектрики) или сопротивления некоторые металлов под действием нагрузки или давления. Затем электрический сигнал преобразуется, усиливается и передается на цифровой индикатор или процессор, управляющий технологическим процессом. Электрические приборы удобны для применения с ЭВМ.

В комбинированных приборах используются различные принципы действия.

МЕТОДИКА И ПОРЯДОК ПРОВЕДЕНИЯ РАБОТЫ

Ознакомление с приборам для измерения давления начинает с теоретического изучения по методическому указанию, вычерчивая схемы и выписывая необходимые сведения о приборах. Затем переходят к изучению приборов по наглядным пособиям, находящимся в лаборатории гидравлики. Жидкостные приборы при изучении не разбираются. Пружинные приборы при изучении разбираются под руководством преподавателя. Категорически запрещается осуществлять разборку приборов при отсутствии преподавателя. Устройство приборов сравниваются с приборами, приведенными на схемах. При необходимости вносятся дополнения в описании приборов в тетради. После завершения изучения приборов они собираются в порядке, обратном разборке, также под руководством преподавателя.

Отчет по работе каждым студентом оформляется письменно в отдельной тетради и должен содержать:

1. Название работы.

2. Формулировку цели работы.

3. Основные понятия, относящиеся ко всем приборам.

4. Схему и описание одного жидкостного прибора.

5. Схему и описание одного пружинного прибора.

Описание грузопоршневых приборов и приборов косвенного

Схемы приборов должны быть выполнены в карандаше с использованием чертежных инструментов.

1. Что называется давлением?

2. Виды давления и единица измерения давления?

3. Какие по назначению бывают приборы для измерения давления?

4. Какие принципы действия приборов для измерения давления?

5. Назначение, устройство и принцип действия пьезометров?

6. Назначение, устройство и принцип действия дифференциальных манометров?

7. Достоинства и недостатки жидкостных приборов для измерения давления?

8. Принцип действия и устройство приборов с трубчатой пружиной?

9. Принцип действия и устройство мембранного прибора для измерения давления?

10. Класс точности пружинных приборов для измерения давления и

что он означает?

11. Принцип действия и область применения грузопоршневых

приборов для измерения давления?

12. Принцип действия и область применения приборов для

измерения давления косвенного действия?

1. Прозоров И.В., Николедзе Г.И., Минеев А.В. Гидравлика, водоснабжение и канализация: Учеб. пособие для строит, спец. вузов.- М.: Выс. шк., 1990, — 448 с.: ил.

2. Башта Т.М., Руднев С. С., Некрасов Б.Б. Гидравлика, гидромашины и гидроприводы.- М.: Машиностроение, 1982.-423 с.: ил.

Время, отведенное на лабораторную работу

Надежный манометр является гарантом безаварийной работы системы, независимо от того, водопровод — это, газопровод, система отопления или замкнутый цикл любого производства. Существуют разные виды таких приборов и в этой статье мы подробно остановимся на них.

Существует давление трех основных типов:

  1. Атмосферное . Это когда атмосфера воздействует на поверхность земли, а также на все находящееся на ней. Здоровый человек его не ощущает, так как оно обычно компенсируется внутренним давлением организма.
  2. Вода в водопроводе может испытывать избыточное давление . Отсюда правило — оно возникает в замкнутом пространстве в различных средах.
  3. Абсолютное возникает при взаимодействии первого и второго вида давления, то есть это сумма показателей атмосферного и избыточного.

Манометр — это прибор, который измеряет второй вид давления (избыточный) в различных системах.

Выбор устройства

Промышленность наших дней использует разные виды манометров. Чтобы произвести правильную покупку измерительного прибора , который будет по всем параметрам подходить для решения производственных процессов, нужно знать:

  • Тип манометра.
  • Рабочий диапазон измерения давления.
  • Класс его точности.
  • Среду его установки.
  • Размеры корпуса.
  • Функциональную нагрузку прибора.
  • Куда будет установлен, а также размер резьбы штуцера.
  • Эксплуатационные условия.

Если следовать вышеизложенному списку, тогда можно подобрать оптимальный прибор, так как все производители манометров придерживаются установленных стандартов . Поэтому устройства разных компаний по сути являются взаимозаменяемыми.

Типы манометров

Современное приборостроение предлагает несколько типов устройств, которые являются измерителями давления в разном диапазоне:

Чтобы осуществить правильный выбор прибора по допустимому интервалу давления следует знать рабочие значения давления технологического процесса , для чего и совершается покупка измерительного прибора. Не ошибитесь в операциях со знаками плюс и минус и прибавьте 30% к рабочему показателю.

Измерительный прибор выбирается с учетом условий и среды эксплуатации. Это будет специальный манометр для работы с воздухом, водой, паром, кислородом, аммиаком, ацетоном или газом. Среда может быть разной, в том числе и агрессивной, поэтому материалы приборов рассчитаны на такие условия эксплуатации. Показатели корпуса, в частности, прочность, диаметр, при выборе учитываются, если предстоит его работа в условиях вибрации или повышенной влажности, чтобы исключить повреждение корпуса от коррозии или механического воздействия.

Функциональная нагрузка

Прибор по измерению давления выбирается в зависимости от потребностей производственного процесса, он должен соответствовать функциям и условиям эксплуатации. Манометры подразделяются на следующие виды функциональной нагрузки:

О назначении сообщает тип корпуса прибора, он может быть:

  • Виброустойчивым.
  • взрывозащищенным.
  • Коррозионностойким.

Применяются манометры в системах котлов, судового и железнодорожного оборудования. Существует группа приборов, способная эксплуатироваться в пищевой отрасли производства. Материал корпуса измерительного прибора позволяет соответствовать условиям службы.

Установка манометра

Перед монтажом нужно обязательно знать случаи, когда измерительные приборы не следует применять:

Прибор устанавливается на видном месте, чтобы любой сотрудник мог увидеть его показания. Манометр монтируют на трубопроводе между запорной арматурой и сосудом.

Корпус должен иметь диаметр в значении не менее 10 сантиметров, не меньше 16 сантиметров на высоте 2–3 метра. Манометры, которые применяются для измерения давления газов , имеют разные цвета корпусов. Например, если корпус у прибора голубой, то это значит перед вами устройство для измерения давления кислорода, желтый свидетельствует о назначении работы с аммиаком, красный используется для горючих газов, черный — негорючих, белый предназначается для ацетилена.

Отправить ответ

  Подписаться  
Уведомление о
Adblock
detector