Работа двухтактного двигателя мотоцикла

Двигатели внутреннего сгорания построены по одному принципу – энергия сгорания топлива превращается в кинетическую энергия вращения коленвала. Существуют два типа моторов – двухтактные и четырехтактные. Оба обладают своими преимуществами и недостатками, попробуем разобраться в чем отличия.

Принцип работы ДВС

Рабочий цикл двухтактного двигателя состоит из впуска и выпуска происходящего за один оборот коленчатого вала, тогда как 4-х тактный имеет следующие циклы — впуск, сжатие, рабочий ход, выпуск. И протекают они за два оборота маховика. В двигателе с 4 тактами впуск и выпуск осуществляются в виде разных процессов, в двухтактнике они совмещены со сжатием топливной смеси и расширением рабочих газов. Принцип действия двухтактного двигателя:

  1. Первый такт – сжатие. Происходит движение поршня от нижней мертвой точки, при этом вначале закрывается продувочное окно. Отработанные выхлопные газы выводятся через выпускное отверстие. В этот момент в кривошипной камере под днищем поршня образуется область разрежения, куда поступает обогащенная топливная смесь из карбюратора (инжектора). Эта порция свежего воздуха выталкивает остатки выхлопных газов в выпускной коллектор. В момент наивысшего положения поршня происходит воспламенение смеси от свечи зажигания.
  2. Второй такт – рабочий ход или расширение. Температура и давление газов в камере сгорания резко увеличивается, под его действием поршень начинает движение к нижней мертвой точке, совершая полезную работу. Повышенное давление в кривошипной камере перекрывает впускной клапан, препятствуя попаданию отработанных газов в карбюратор. Через систему выпускных окон отработавшие газы уходят в глушитель, а через продувочное окно начинает поступать свежая горючая смесь в камеру сгорания. В самой нижней точке действие второго такта заканчивается и процесс повторяется.

Двухтактный дизельный двигатель работает по такому же принципу, только у него отсутствует свеча зажигания, а воспламенение топлива происходит от сжатия. Поэтому степень сжатия в дизельных двс намного выше бензиновых.

Особенности мотора с двумя тактами

Двухтактный двигатель совершает полный цикл за один оборот коленвала, это позволяет получить большую удельную литровую мощность чем у 4-х тактного движка при тех же оборотах двигателя. Однако, кпд двухтактника будет ниже из-за несовершенства механизма фаз газораспределения, неизбежных потерь топливной смеси в процессе продувки и неполного рабочего хода поршня.

Двухтактный двигатель сильно греется, потому что во время работы высвобождается большая тепловая энергия. Иногда может потребоваться дополнительное охлаждение. В мотоциклах редко используются двухтактные моторы с большим количеством цилиндров, чаще всего применяется одноцилиндровый мотор с воздушным охлаждением.

При работе по двухтактному циклу поршень совершает меньше движений за один такт, а нагрузка вспомогательных газораспределительных, смазочных и охлаждающих систем на коленвал ниже или отсутствует совсем. Поэтому износ поршневой группы у них будет ниже. Если для легкой техники это не является решающим фактором, то тихоходный двухтактный дизельный двигатель может иметь в несколько раз больший ресурс, чем все остальные двс. Поэтому они нашли широкое распространение в тепловозах, генераторах, судовых двигателях.

Двухтактный бензиновый двигатель быстрее набирает обороты максимальной мощности. Этим активно пользуются мотоспортсмены, особенно в кроссовых дисциплинах, когда необходим мгновенный отклик на рукоятку газа. Кроме того, он проще в обслуживании, дешевле и легче четырехтактного.

Расход топлива у двухтактника будет выше на 25-30 %, шумность и вибрации тоже. Двигатель невозможно вписать в жесткие экологические нормы, даже если использовать инжекторные системы впуска и наддув. Большой расход воздуха требует применения специальных воздушных фильтров.

Система смазки и приготовление топлива

Работа двухтактного двигателя требует эффективной смазки движущихся узлов. Централизованная раздельная система смазки с масляным насосом, как у четырехтактных двигателей, здесь отсутствует, поэтому масло добавляется в бензин в соотношении 1:25 – 1:50. Полученный состав, находясь в поршневой и кривошипно-шатунной камере, смазывает подшипники шатуна, стенки цилиндра и поршневые кольца. При воспламенении воздушной смеси масло сгорает и удаляется вместе с выхлопными газами.

Моторное масло должно быть специальное — для двухтактного двигателя, обычно оно имеет маркировку 2Т на канистре. Использование обычного автомобильного масла недопустимо по ряду причин:

  • Масло для двухтактных двигателей обязано обладать хорошей растворимостью в бензине;
  • Обладает прекрасными смазывающими свойствами, улучшая работу двигателя и уменьшая трение;
  • Защита от коррозии трущихся деталей поршневой группы;
  • Двухтактное масло должно сгорать без остатка, не образовывая нагар и сажу. Высокая зольность обычного масла приводит к закоксовыванию поршневых колец.

Подачу смазки в двухтактный двигатель можно осуществить двумя способами. Первый и самый простой – смешивать с топливом в нужной пропорции. Второй – это раздельная система смазки двухтактного двигателя, когда состав из топлива и масла готовится непосредственно перед попаданием внутрь в специальном патрубке. В этом случае устанавливается отдельный бачок для масла, а его подача осуществляется с помощью специального плунжерного насоса.

Эта система получила широкое распространение на современных мотоциклах и скутерах. Кроме удобства использования (теперь не нужно доливать масло в бак на глаз каждую заправку), происходит серьезная экономия масла, потому что впрыск его зависит от оборотов двигателя. На холостых оборотах пропорция масла может составлять всего 1:200.

Тюнинг двухтактного двигателя

Любой двухтактный мотор имеет возможности для форсировки. Увеличение мощности при таком же объеме оправдано в спорте, а в повседневной эксплуатации двигатель становится эластичнее и экономичнее. Основные способы доработки:

  1. Увеличить диаметр выпускного отверстия и обеспечить его максимально продолжительное время открытия. Это позволяет выпустить максимальное количество газов. Таким образом повышаются тяговые возможности двигателя и его крутящий момент.
  2. Обеспечить эффективную продувку. Для этого можно увеличить диаметр впускного окна, тогда горючая смесь не будет задерживаться в картере и обеспечится своевременный впрыск в камеру сгорания.
  3. Применение на карбюраторе вихревого диффузора, который за то же время подает большее количество топливной смеси. Вместе с ним целесообразно применение воздушного фильтра нулевого сопротивления.
  4. Установка резонатора выпуска, расчет которого произведен под конкретный объем двигателя. Такое устройство возвращает часть топливной смеси назад в цилиндр через выпускное отверстие.
  5. Доработка шатунно-поршневой группы, ее облегчение и тщательная балансировка. Клапана и каналы должны быть притерты и не иметь заусенец (задиров), тормозящие и завихряющие потоки. Это уменьшает наполняемость цилиндра и снижает мощность.
  6. Применение инжекторных систем впрыска и регулирование фазами газораспределения. Это позволяет точнее дозировать количество подаваемого топлива и уменьшить потери горючей смеси во время продувки цилиндра.
  7. Установка систем наддува. Обычно это компрессорные нагнетатели, а на двухтактный дизельный двигатель может быть установлен традиционный турбокомпрессор. С его помощью увеличивается количество поступаемого в цилиндры воздуха, соответственно и количество горючего может быть увеличено.

Эксплуатация и причины поломки двигателей

Чаще всего двухтактные моторы встречаются в мототехнике, лодочных двигателях, газонокосилках, цепных пилах и прочих устройствах, где требуется применение легкого и надежного двигателя. Тем не менее, даже такой простой по конструкции движок может выйти из строя из-за нарушения правил эксплуатации.

  • Низкое качество бензина. Плохое топливо часто приводит к появлению детонации. Чаще всего это заметно на невысоких оборотах при подгазовках. Возникающие ударные нагрузки приводят к поломке перегородок поршней, чрезмерным нагрузкам на подшипники коленвала. Детонация может возникать из-за перегрева двигателя, нагара на поршне и бедной смеси.
  • Низкое качество деталей, из которых собран мотор. Особенно это актуально для китайских производителей, часто допускающих брак в производстве комплектующих. Это приводит к раннему выходу из строя поршня, коленчатого вала, цилиндра и прочих деталей, а затем и капитальному ремонту. Обычно помогает оценить состояние поршневой простой замер компрессии.
  • Низкокачественное моторное масло. Топливомасляная смесь для двухтактных двигателей имеет очень важное значение. Именно от его качества будет зависеть как мягко работает мотор, чистота выхлопа, отсутствие перегрева и лишних шумов. Плохое масло приводит к образованию слоя нагара на поршне, в коренных и шатунных подшипниках, к задирам на стенках цилиндра и юбке поршня, проходное сечение глушителя уменьшается из-за нагара. Масла для двухтактных двигателей следует применять синтетические или полусинтетические, использование минералки нежелательно.
  • Перегрев на двухтактном двигателе воздушного охлаждения не редкость. К этому приводит длительная работа с полностью открытым дросселем, или неисправность системы охлаждения. Перегрев может быть кратковременным, когда наблюдается потеря мощности и максимальных оборотов, после снижения нагрузки и охлаждения двигателя все приходит в норму. Клин возникает вследствие очень сильного перегрева, когда тепловой зазор между поршнем и цилиндром уменьшается настолько, что силы трения намертво прихватывают их между собой. После него требуется ремонт ЦПГ.
  • Карбюратор не настроен. Топливная смесь получается слишком бедной или очень богатой. Езда на переобогащенной смеси чревата высоким расходом топлива, потерей мощности и образованию нагара. Бедная смесь может вызывать детонацию и снижение максимальной мощности двигателя.

Чтобы продлить срок службы и отсрочить капремонт, следует провести правильную обкатку двухтактного лодочного или мотоциклетного мотора. Для этого пропорция масла смешиваемого с бензином должна быть немного выше установленной для нормальной эксплуатации. На такой смеси дать двигателю поработать в режиме неполной мощности несколько часов, что эквивалентно 500-1000 км пробега для скутера и мотоцикла.

Все же из-за токсичности выхлопа двухтактные двигатели постепенно вытесняются современными четырехтактными. Они продолжают использоваться только там, где требуется высокая удельная мощность при минимальной массе и простоте конструкции – мототехника, бензопилы и триммеры, модели самолетов и многое другое.

Читайте также:  Поделки с помощью дремеля

Двухта́ктный дви́гатель — двигатель внутреннего сгорания, в котором рабочий процесс в каждом из цилиндров совершается за один оборот коленчатого вала, то есть за два хода поршня [1] . Такты сжатия и рабочего хода в двухтактном двигателе (за исключением двигателя Ленуара) происходят так же, как и в четырёхтактном (а значит, возможна реализация тех же термодинамических циклов, кроме цикла Аткинсона), но процессы очистки и наполнения цилиндра совмещены и осуществляются не в рамках отдельных тактов, а за короткое время, когда поршень находится вблизи нижней мёртвой точки. Процесс удаления из цилиндра отработавших газов и наполнения его свежим зарядом в двухтактном двигателе называется продувкой.

Содержание

Сравнение двухтактного и четырёхтактного двигателя [ править | править код ]

Рабочий цикл двухтактного двигателя происходит за один оборот коленчатого вала, что позволяет снимать в 1,5-1,7 раза бо́льшую мощность с того же рабочего объёма при тех же оборотах двигателя. Это особенно актуально при создании тяжёлых тихоходных двигателей средних и тяжёлых судов, соединяемых непосредственно с валом гребного винта регулируемого шага, а также в поршневой авиации, где для эффективной работы воздушного винта также требуются сравнительно низкие рабочие обороты, что позволяет устранить из конструкции редуктор привода на винт.

В качестве автомобильного или, тем более, мотоциклетного такой двигатель менее выгоден, тем не менее также позволяет создать сравнительно компактные, но мощные силовые агрегаты, нашедшие применение в мототехнике и, ранее, микролитражных и малолитражных легковых автомобилях (с кривошипно-камерной продувкой, рабочим объёмом обычно до 1,5 — 1,7 литра), а также на грузовых автомобилях и автобусах (с прямоточной продувкой, рабочим объёмом обычно от 4 литров и более).

Из-за вдвое большей частоты рабочих тактов и за счет омывания деталей, обеспечивающих выхлоп, удвоенным количеством выхлопных газов, эти детали двигателя находятся в более напряжённом тепловом режиме. В двигателях большой мощности обязательно используется принудительное охлаждение поршней.

За счёт вдвое меньшего количества нерабочих ходов поршня в каждом рабочем цикле вдвое уменьшаются потери на трение.

В двухтактных двигателях необходимо искать компромисс между качеством продувки и потерями свежего заряда. В отличие от четырёхтактного двигателя, где между тактами выпуска и впуска поршень находится в верхней мёртвой точке, почти полностью вытесняя выхлопные газы, в двухтактном продувка происходит во всём объёме цилиндра сразу, причём за достаточно короткое время. При этом невозможно полностью исключить смешивание свежего заряда с выхлопными газами. Особенно проблема потерь заряда актуальна для карбюраторных двигателей, так как в них в цилиндр во время продувки поступает готовая рабочая смесь, что приводит к увеличенному расходу топлива и большому количеству несгоревших углеводородов в выхлопе. В целом двухтактные двигатели имеют в 1,5-2 раза больший расход воздуха, из-за чего могут требовать более сложных воздушных фильтров. В отличие от четырёхтактного двигателя, при использовании турбонаддува энергия поступающего из турбокомпрессора воздуха не передаётся через поршень на коленчатый вал двигателя, в то же время выхлопные газы при выпуске не оказывают противодавления на поршень.

По конструкции двухтактный двигатель может быть как более простым (при контурной кривошипно-камерной и, отчасти, клапанно-щелевой продувке), так и более сложным, чем четырёхтактный (при прямоточной продувке).

Источники продувочного воздуха [ править | править код ]

В то время как в четырёхтактном двигателе всасывание свежего заряда происходит за счёт движения поршня из верхней мёртвой точки вниз при открытом впускном клапане, а опорожнение — вверх при открытом выпускном, в двухтактном свежий заряд должен поступать в цилиндр под давлением, вытесняя отработавшие газы. Для создания давления требуется нагнетатель. В упрощённых двигателях для этой цели используется нижняя часть поршня и полость картера — такая схема называется кривошипно-камерной продувкой.

В двигателях более сложных в качестве источника продувочного воздуха используются воздуходувки системы Рутс, дополнительные цилиндры (двигатель Корейво), специальные поршневые компрессоры (ЮМО-203) или турбинные нагнетатели, которые могут вращаться валом двигателя или турбиной, приводимой выхлопными газами. В некоторых случаях для обеспечения более стабильного поступления наддувочного воздуха используется сочетание механических нагнетателей с турбонаддувом.

Кривошипно-камерная продувка [ править | править код ]

При использовании кривошипно-камерной продувки воздух или горючая смесь поступает в цилиндр из полости картера двигателя, куда всасывается при движении поршня вверх, при движении поршня вниз избыточное давление обеспечивает продувку. При такой схеме возможно создание двигателя, состоящего из минимального количества деталей, так как ему не требуется продувочный насос. Чтобы не допустить потерь заряда через впускной трубопровод в атмосферу, перед входом в картер может устанавливаться лепестковый клапан либо насаженный на коленчатый вал дисковый золотник.

При использовании кривошипно-камерной продувки существуют определённые особенности, ограничивающие применение таких двигателей:

  • Необходимо, чтобы полость кривошипной камеры конкретного цилиндра была герметична и, по возможности, чтобы коленвал занимал возможно больший объём и был обтекаем, чтобы как можно меньше влиять на газодинамику, а большой объём металла существенно утяжеляет вал. Каждую кривошипную камеру многоцилиндрового двигателя приходится уплотнять сальниками с каждой стороны каждой коренной шейки, что требует применения разборного коленчатого вала (как следствие, существенная потеря жёсткости вала по сравнению с цельным).
  • Давление сжатия воздуха (смеси) в кривошипной камере невелико, что не позволяет получить и существенного давления продувочного воздуха (приходится увеличивать длительность фазы продувки, это вынуждает снижать эффективный рабочий объём — с потерей КПД).
  • Двигатели такой конструкции не позволяют разместить в картере масляную ванну. Для смазки карбюраторного двигателя приходится подмешивать моторное масло в топливо. В случаях с упрощёнными конструкциями это может считаться достоинством, так как редуцирует систему смазки двигателя как таковую. В ряде двигателей применяется раздельная подача масла и бензина в карбюратор («Ява-ОйлМастер»), но все равно подача масла к парам трения происходит за счёт осаждения из горючей смеси, из-за чего у таких двигателей высокий расход масла, которое, вдобавок, сгорает в цилиндре вместе с топливом. По этой же причине в двухтактных двигателях без системы смазки приходится использовать специальные масла, не содержащие присадок, способствующих закоксовыванию каналов и поверхностей деталей цилиндро-поршневой группы.

Дизельные и калоризаторные двигатели подобной конструкции также не имели масляной ванны в картере, так как пары масла, попадающие в цилиндр, могли бы привести к разносу. В них использовались схемы смазки с «сухим» картером. В двигателях простой конструкции, не рассчитанных на длительную непрерывную работу, применялась незамкнутая система смазки, где вместо масляного насоса часто применялась пневматические маслёнки — в этом случае требовалось регулярно сливать накапливающееся в картере отработавшее масло.

  • На холостом ходу и при малых углах открытия дроссельной заслонки свежего заряда недостаточно для того, чтобы цилиндр мог полностью очиститься от выхлопных газов за один оборот коленчатого вала. Поэтому работа таких двигателей на холостом ходу часто неустойчива, после вспышки в цилиндре следует несколько холостых оборотов, при которых смесь в цилиндре слишком бедная, чтобы воспламениться от искры. Для дизельных и калоризаторных двигателей такая особенность не характерна за счет иного способа организации процесса горения и наполнения цилиндра при впуске только свежим воздухом.

С использованием продувочных насосов [ править | править код ]

На крупных многоцилиндровых двухтактных двигателях продувочный воздух сжимается в отдельном компрессоре (типа Рутс, либо пластинчатый), что практически полностью устраняет указанные выше недостатки. При этом, однако, воздух может подаваться в цилиндры через полость картера, которая в этом случае выполняет функции ресивера. Для создания давления продувки может использоваться и турбокомпрессор, но в этом случае в момент пуска в двигатель необходимо подавать сжатый воздух от внешнего источника либо использовать двухступенчатый наддув с механической ступенью (10Д100).

В ранних двухтактных двигателях также применяли поршневые компрессоры, работающие от одного коленчатого вала с двигателем. Например, на ПДП-дизеле ЮМО-203 Юнкерса в качестве продувочных использовались особые квадратные поршни, установленные на траверсах поршней верхнего ряда. В двигателе английского микролитражного автомобиля Lloyd 650 (конец 1940-х годов) использовался запатентованный Роландом Ллойдом поршневой насос двойного действия («третий цилиндр»), имевший цепной привод от коленвала и продувавший два рабочих цилиндра бензовоздушной смесью.

Читайте также:  Станок гибочный для листовой стали

Схемы продувки [ править | править код ]

В поршневых двигателях внутреннего сгорания большое значение имеет качественная очистка объёма цилиндра от отработавших газов. В бензиновых двигателях остатки отработавших газов приводят к преждевременному воспламенению из-за высокой температуры. В любых двигателях плохая очистка ведёт к снижению максимальной мощности и ухудшению качества сгорания топлива. Так как продувка происходит через весь объём цилиндра при нахождении поршня (или поршней) вблизи нижней мёртвой точки, качественно очистить цилиндр от отработавших газов гораздо сложнее. Улучшения качества продувки можно достичь двумя путями: оптимизацией траектории движения свежего заряда при продувке либо путём подачи избыточного количества продувочного воздуха, который будет выброшен в выхлопную трубу вместе с отработавшими газами. Второй способ применим только при наличии нагнетателя и прямого впрыска топлива в цилиндр.

Так как в двухтактном двигателе все процессы происходят за один оборот коленчатого вала, есть возможность упростить конструкцию двигателя, заменив впускные и/или выпускные клапаны окнами в стенке цилиндра, которые будут перекрываться рабочим поршнем. Отсутствие клапанов и клапанных пружин позволяет двигателю работать при более высокой частоте вращения. Однако при этом возникает проблема асимметричного открытия и закрытия окон относительно мертвых точек: продувочные окна должны открываться позже выпускных, чтобы к моменту их открытия давление в цилиндре понизилось и выхлопные газы не проходили через впускные окна, но и закрываться тоже позже, иначе вытеснив отработавшие газы, свежий заряд будет выходить через выпускные окна, пока те не будут перекрыты. При этом, кроме возникновения потерь свежего заряда становится невозможным наддув.

Однопоршневые двигатели с щелевой (контурной) продувкой [ править | править код ]

Наиболее простая схема, при которой имеется один поршень, а газораспределение осуществляется за счёт перекрытия окон в стенке цилиндра. Впускные и продувочные окна в таком двигателе располагаются в нижней части цилиндра, так как должны быть перекрыты во время сжатия и рабочего хода двигателя. При этом осуществить асимметричность фаз газораспределения без введения дополнительных элементов (золотников, гильз, клапанов и т. д.) невозможно.

Простота реализации контурной продувки (особенно при использовании подпоршневого пространства в качестве продувочного насоса, то есть кривошипно-камерной) и дешевизна обеспечили очень широкое распространение таких двигателей на недорогих и легких устройствах. Их устанавливают на мопедах, мотоциклах, мотодельтапланах, мотопилах, газонокосилках, моторных лодках, используют в качестве пусковых двигателей, то есть там, где небольшая мощность делает относительно малозаметными дополнительные потери и играют существенную роль дешевизна и доступность конструкции. Такие двигатели применялись также на ряде автомобилей, например на DKW, СААБ, Trabant, Wartburg, Barkas в Европе, Suzuki Jimny в Японии.

Симметрия открытия впускных и выпускных окон позволяет достаточно просто организовать реверсирование двигателя — двигатель просто продолжает вращаться в том же направлении, в котором он вращался при запуске. Низкооборотные дизельные и калоризаторные двигатели с маховиками большой массы реверсируются при снижении оборотов: если при подходе к верхней мёртвой точке инерции маховика становится недостаточно для продолжения движения в том же направлении, при вспышке в цилиндре он начинает вращаться в обратном.

Существенно улучшить экономичность двухтактных двигателей с контурной продувкой позволяет применение системы впрыска топлива вместо карбюратора. Последние образцы мотоциклетных двухтактных двигателей с впрыском на 50 % экономичней карбюраторных, значительно превосходя при этом четырёхтактные моторы в литровой мощности [2] .

Для снижения потерь заряда применяется принцип Каденасси — аэродинамическая и акустическая настройка трактов с использованием отражённой волны выхлопных газов. Для этого в выхлопной системе двигателя устанавливаются акустический резонатор, который настраивается так, чтобы часть попавших в неё газов возвращалась обратно перед закрытием выпускных окон. Кроме того, она может эффективно работать в узкой части диапазона оборотов двигателя — а именно в той, на которой происходит резонанс газовой струи.

Так как газораспределительные окна находятся в нижней части цилиндра, возникают сложности с продувкой его верхней части. Для этого струю воздуха или горючей смеси направляют так, чтобы она двигалась вдоль контура цилиндра — поэтому такие схемы продувки называют контурными. Существует несколько разновидностей контурной продувки.

Поперечная схема продувки наиболее проста: в ней выпускные окна располагаются напротив впускных. Такая схема продувки на современных двигателях не применяется, так как влечёт за собой большие потери заряда из-за того, что он движется по траекториям разной длины и достигает выпускного окна через разное время.

Дефлекторная продувка схожа с поперечной, однако на поршне имеется выступ — дефлектор, имеющий форму козырька. Дефлектор направляет поток продувочного воздуха, не позволяя ему смешиваться с отработавшими газами. Кроме того, при малом открытии дросселя благодаря дефлектору рабочая смесь распределяется неравномерно: если со стороны выпускных окон свежий заряд сильно перемешан с отработавшими газами, то со стороны впускных окон горючая смесь более богатая и легко поджигается свечой. Таким образом, дефлекторная продувка лучше работает на холостом ходу и частичных нагрузках. Кроме того, цилиндры двигателей с дефлекторной продувкой проще в изготовлении, так как не критичны к форме впускного канала. Однако для высокофорсированных двигателей дефлекторная продувка не подходит. Сложная форма камеры сгорания при дефлекторной продувке ухудшает параметры рабочего процесса и повышает склонность бензиновых двигателей к детонации, а дизельных — к дымлению, что препятствует форсированию и повышению экономичности двигателей. К тому же поршень с толстым донышком склонен к перегреву. В связи с этим большинство производителей двухтактных двигателей отказались от дефлекторной продувки.

При фонтанной продувке продувочные и выпускные окна располагаются по всей окружности цилиндра в два ряда: сверху — выпускные, а под ними — продувочные окна. Такая схема позволяет несколько лучше продуть центральную область, однако из-за вихревого движения смеси увеличивается потеря свежего заряда.

Наиболее распространена петлевая схема продувки, при которой впускные окна расположены достаточно близко к выпускным, однако за счёт формы впускного трубопровода свежий заряд направляется вверх и в меньшей степени увлекается отработавшими газами.

ПОЧЕМУ «ЛЕТАЮТ» МОТОЦИКЛЫ

ПОЧЕМУ «ЛЕТАЮТ» МОТОЦИКЛЫ

Теперь мы, автомобилисты, все чаще задаемся этим вопросом, видя, как двухколесная машина в ярком обтекателе срывается с места и пулей исчезает из глаз. Дело не только в малой массе — мотоциклетные моторы ныне в большинстве своем намного превосходят автомобильные, особенно по удельным показателям. О том, какими техническими ухищрениями достигнуто это превосходство, специально для «За рулем» рассказывает обозреватель журнала «Мото» Александр ВОРОНЦОВ.

Сфера применения мотоцикла (будем называть так любую двухколесную машину с двигателем внутреннего сгорания) чрезвычайно широка, поэтому и вариантов исполнения мотоциклетных двигателей неисчислимое множество. Подробный обзор всех этих конструкций — тема не статьи, а весьма объемистой книги. Здесь постараюсь обозначить лишь основные тенденции развития двигателей для мотоциклов*.

Спор между двухтактными и четырехтактными двигателями в автомобилестроении был решен в пользу четырех тактов еще в 50-е годы (правда, не окончательно — процесс, разработанный австралийской фирмой «Орбитал», весьма заинтересовал крупнейшие автомобильные компании мира). В мотоциклостроении же обе принципиальные схемы мирно уживаются, поделив сферы влияния. Причем двухтактные двигатели закрепились в двух совершенно различных областях — они применяются либо на дешевых машинах утилитарного назначения, либо на мотоциклах ярко выраженного спортивного характера. В первом случае их ценят за простоту. Во втором — за двукратный перевес в мощности над четырехтактным двигателем того же рабочего объема (в теории). Правда, в силу присущих двухтактному двигателю недостатков — прежде всего, продувки топливно-воздушной смесью — это преимущество на практике никогда не удается воплотить полностью. Но все же перевес получается солидным — не зря в мотогонках Гран-при четырехтактные двигатели не появляются уже более десяти лет.

ВСЕГО ДВА ТАКТА

Двухтактные моторы машин утилитарного назначения весьма традиционны по конструкции и фактически застыли на уровне, достигнутом к началу 70-х годов. У них относительно невысокая (для мотоциклостроения) литровая мощность — не более 100 л. с./л. Как правило, эти двигатели — одноцилиндровые, с отлитым из алюминиевого сплава цилиндром и чугунной гильзой. Смазка — в смеси с топливом либо раздельная. Зажигание — незамысловатая электронная бесконтактная схема. Во впускном тракте установлен лепестковый клапан, препятствующий обратному выбросу смеси. Это простое и эффективное устройство позволяет расширить рабочий диапазон двигателя и повысить КПД, потому двухтактники, где нет этого узла, можно пересчитать по пальцам.

СЛОЖНЕЕ, ЕЩЕ СЛОЖНЕЕ.

Есть и более изысканные конструкции — у двухтактных двигателей мотороллеров и легких мотоциклов, выпускаемых в Европе и Японии. Мотороллерные моторы — с воздушным принудительным охлаждением, а наиболее форсированные (до 140 л. с./л) — даже с жидкостным. Чугунную гильзу у таких двигателей заменяет специальное покрытие, обычно никелькремниевое. Раздельная система смазки применяется обязательно — иначе «двухтактник» не вписывается в довольно жесткие нормы чистоты выхлопа. Не редкость на современных мотороллерах и мопедах и катализатор в выпускной системе. Объединяет «утилитарные» двухтактные моторы одно: их рабочий объем не превышает 200 см3 — при большем разрыв в топливной экономичности двух- и четырехтактных двигателей становится слишком заметным. Лишь два исключения — наш ИЖ и чешская «Ява» — конструкции, корни которых уходят в полувековую давность, подтверждают это правило. Бывают исключения и с «другой стороны»: не редкость утилитарные машины с четырехтактными двигателями объемом 125 и даже 100 см3 (причем у «Хонды», а также ее многочисленных копий из Юго-Восточной Азии «полтинник» и тот может быть четырехтактным).

Читайте также:  Регулятор вращения асинхронного двигателя 220в

Подлинный шедевр современной техники — двухтактные двигатели спортбайков и машин типа «эндуро». Сложностью «начинки» они не уступают четырехтактным моторам! Кроме лепесткового клапана на впуске, появилась еще и специальная заслонка — так называемый мощностной клапан — на выпуске. Дело в том, что для двухтактного двигателя чрезвычайно важное значение имеет не только форма камеры сгорания и каналов в «теле» двигателя, но и настройка впускной и выпускной систем. Это связано с продувкой цилиндра, во время которой часть топливно-воздушной смеси вылетает в выпускную систему. Смесь удается вернуть в камеру сгорания, используя волновые процессы. Но лишь в определенном диапазоне оборотов. Мощностной клапан, перекрывая часть проходного сечения выпускного патрубка, меняет сопротивление выпускной системы и тем самым ее настройку, расширяя диапазон наиболее эффективной работы двигателя. Такие системы появились в начале 80-х годов на двухтактных моторах кроссовых и гоночных мотоциклов. Поначалу они имели центробежные регуляторы механического типа, но сейчас управление мощностными клапанами возложено на электронику.

Поскольку литровая мощность описанных двигателей очень высока — до 300 л.с./л — и, соответственно, тепловой режим весьма напряженный, то их охлаждение только жидкостное. Электронные системы зажигания — более сложные, с цифровым процессором, что позволяет задавать оптимальное опережение в зависимости от оборотов двигателя.

Будущее двухтактных двигателей, очевидно, за системами впрыска топлива, которые позволят, наконец, разделить процессы продувки и наполнения цилиндра. Характерно, что в конце 1996 года появились сразу две модели совершенно различного назначения с двухтактными двигателями, оснащенными впрыском топлива, — 50-кубовый мотороллер «Веспа-50ЕТ2» и 500-кубовый спортбайк «Бимота V-Дуэ».

Конструкции таких моторов не менее, а, пожалуй, даже и более разнообразны, чем двухтактных. Подходы к проектированию двигателей для машин утилитарного назначения и для дорогих тяжелых мотоциклов опять-таки совершенно различны. Для «рабочей лошадки» характерен одноцилиндровый двигатель рабочим объемом 125–250 см3, с почти вертикальным расположением цилиндра, воздушным охлаждением, верхним распределительным валом с приводом цепью, двухклапанной головкой цилиндра.

В отличие от автомобиля, где двигатель всегда закрыт капотом и его дизайном начали заниматься лишь в последние годы, для мотоцикла внешний вид двигателя часто имеет решающее значение. Только, пожалуй, в американском автомобилестроении мода влияла на число и расположение цилиндров. А для мотоцикла такое — в порядке вещей: вот уже 15 лет не проходит мода на двухцилиндровые V-образные четырехтактные двигатели, представленные великим множеством вариантов рабочего объема — от 125 до 1500 «кубиков». Своеобразные достоинства этой компоновочной схемы — особая вибрация и характерный неровный звук мотора — в общем, мотоциклетные радости мало понятны завзятому автомобилисту.

Но вершина развития мотоциклетных двигателей — это, конечно, рядные «четверки». Моторы подобного типа всегда на два-три шага опережают автомобильные. Например, четырехклапанная схема, которая лишь в последние годы стала общепринятой в автомобилестроении, получила широкое распространение на мотоциклетных четырехцилиндровых моторах уже в конце 70-х годов. Да и сегодня много ли найдется автомобильных двигателей с удельной мощностью 175 л. с./л, способных работать на 12 000 об/мин? А вот 105-сильная «Хонда-CBR600R», из технической характеристики которой взяты эти параметры, не считается слишком уж «горячим» спортбайком — так, разъездная лошадка на каждый день.

Поскольку четырехцилиндровые моторы весьма популярны и в автомобилестроении, то интересно подробнее рассмотреть конструкцию такого двигателя, чтобы понять, как достигают столь высоких показателей.

Прежде всего бросается в глаза целая батарея карбюраторов — по одному на каждый цилиндр. Такое решение позволяет убить целую стаю зайцев: каждый цилиндр получает смесь оптимального состава, обеспечивается равномерность наполнения (конечно, при условии синхронизации карбюраторов), впускной тракт получается минимальной длины, поэтому топливо не конденсируется на его стенках. Кроме того, форма тракта — почти прямая, без изгибов и выступов. Своеобразна и конструкция карбюраторов. Кроме дроссельной заслонки, они оснащены дроссельным золотником с дозирующей иглой, подвешенным на гибкой мембране. Полость над мембраной соединена с впускным трактом. Заслонка регулирует количество смеси, при этом в соответствии с ее положением и скоростным режимом работы двигателя золотник с иглой автоматически обеспечивает постоянное разрежение у распылителя и тем самым — точное дозирование смеси. По сути, батарея индивидуальных карбюраторов дает почти те же преимущества, что и распределенная система впрыска топлива, но за меньшую цену. Это и определяет пока еще умеренное распространение систем впрыска на мотоциклах (на рядных «четверках» впрыск применяет лишь БМВ и на одной модели — «Ямаха»).

Цилиндры и головки цилиндров двигателей отливают из алюминиевого сплава. Покрытие на стенках цилиндров — никель-кремниевое, но в последнее время вновь получили распространение чугунные гильзы, обеспечивающие больший срок службы мотора. Охлаждение — жидкостное, по той же схеме, что принята и в автомобиле. В систему смазки включен масляный радиатор, который на наиболее современных двигателях также с жидкостным охлаждением. Специальные распылители брызгают маслом на внутреннюю поверхность поршня, снижая тепловое напряжение этой детали.

Два верхних распределительных вала вращают чаще всего с помощью многозвенной пластинчатой цепи, надежной и малошумной. Для компактности их располагают достаточно близко друг к другу, так что угол между клапанами (два впускных и два выпускных на цилиндр, а у двигателей «Ямаха» — три впускных и два выпускных) составляет около 30°. При этом форма камеры сгорания компактна, с небольшой площадью поверхности, что способствует повышению термического КПД. Часть камеры сгорания образуется выемкой в поршне, так что в верхней мертвой точке периферийная область днища почти соприкасается с головкой цилиндра. Топливно-воздушная смесь в конце хода сжатия с силой выталкивается из этой области в зону свечи зажигания, перемешивая при этом весь заряд смеси (так называемый сквиш-эффект). Таким образом, смесь перед появлением искры находится в интенсивном движении, причем более богатый заряд — как раз у свечи, что помогает надежному воспламенению и быстрому сгоранию смеси.

Применение микропроцессоров в системе зажигания позволяет учитывать большее количество параметров. Так, момент опережения зажигания определяется не только числом оборотов двигателя, но и положением дроссельной заслонки. Поскольку средние цилиндры испытывают, несмотря на жидкостное охлаждение, более напряженный тепловой режим, момент зажигания для них изменяется по иной закономерности, чем для крайних.

С ЧУВСТВОМ ПРЕВОСХОДСТВА

Как и десятилетия назад, мотоциклетные двигатели демонстрируют превосходство в удельной мощности над автомобильными. Пойдет ли развитие последних в том же направлении? Вряд ли. Экономичность и долговечность для мощных мотоциклетных двигателей не столь актуальны — ведь подобный мотоцикл давно уже стал не средством транспорта, а игрушкой взрослого человека. А некоторая непрактичность (например, эксплуатационный расход топлива у 750-кубового мотоцикла выше, чем у малолитражки вдвое больше рабочего объема) игрушке всегда прощалась. Однако такая расточительность непростительна для автомобиля, на котором каждый день ездят на работу.

* Обзор современных мотоциклов — см. ЗР, 1996, № 6.

Современный двухтактный двигатель с лепестковым обратным клапаном (1) на впуске и регулируемой заслонкой (2) — мощностным клапаном на выпуске («Ямаха-DT125»).

Мощностной клапан (1) управляется сервомотором (2), получающим сигнал от микропроцессора, и обеспечивает оптимальную настройку выпускной системы в зависимости от оборотов двигателя.

Компактная конструкция четырехцилиндрового четырехтактного двигателя («Сузуки-GSX-R750»).

Картерные детали и блок цилиндров двигателя отлиты из алюминиевого сплава. Вместо гильз — никелькремнеуглеродистое покрытие.

Впускной тракт спрямлен для достижения максимального наполнения цилиндра.

Система уравновешивания четырехцилиндрового двигателя «Хонда-СВХ1100ХХ»: 1 — балансирный вал; 2 — промежуточная шестерня; 3 — балансирный вал; 4 — шестерня на коленчатом валу.

Батарея из четырех карбюраторов обеспечивает питание мотоциклетного четырехцилиндрового мотора.

Система инерционного наддува, обеспечивающая лучшее наполнение цилиндров на высоких скоростях («Сузуки-GSX-R600»).

Одноцилиндровый четырехтактный двигатель мотоцикла «Ямаха-SZR660» с пятиклапанной головкой цилиндра.

Двухцилиндровый оппозитный двигатель БМВ нового поколения. Для уменьшения ширины мотора применили привод от верхнего распредвала через короткие штанги и коромысла. БМВ — одна из немногих компаний, использующая на мотоциклетных моторах впрыск топлива.

Двухцилиндровые V-образные двигатели вот уже 90 лет на мотоциклах

Отправить ответ

  Подписаться  
Уведомление о
Adblock
detector