Схема с общей базой принцип работы

Эта схема не дает значительного усиления сигнала, зато хороша на высоких частотах, поскольку позволяет более полно использовать частотную характеристику транзистора. Если один и тот же транзистор включить сначала по схеме с общим эмиттером, а потом с общей базой, то во втором случае будет наблюдаться значительное увеличение его граничной частоты усиления. Поскольку при таком подключении входное сопротивление низкое, а выходное — не очень большое, то собранные по схеме с ОБ каскады транзисторов применяют в антенных усилителях, где волновое сопротивление кабелей обычно не превышает 100 Ом.

В схеме с общей базой не происходит инвертирование фазы сигнала, а уровень шумов на высоких частотах снижается. Но, как уже было сказано, коэффициент усиления по току у нее всегда немного меньше единицы. Правда, коэффициент усиления по напряжению здесь такой же, как и в схеме с общим эмиттером. К недостаткам схемы с общей базой можно также отнести необходимость использования двух источников питания.

12. Типовые схемы включения биполярного транзистора – схема с общим эмиттером.

Схема включения с общим эмиттером

Эта схема дает наибольшее усиление по напряжению и току (а отсюда и по мощности — до десятков тысяч единиц), в связи с чем является наиболее распространенной. Здесь переход эмиттер-база включается прямо, а переход база-коллектор — обратно. А поскольку и на базу, и на коллектор подается напряжение одного знака, то схему можно запитать от одного источника. В этой схеме фаза выходного переменного напряжения меняется относительно фазы входного переменного напряжения на 180 градусов.

Но ко всем плюшкам схема с ОЭ имеет и существенный недостаток. Он заключается в том, что рост частоты и температуры приводит к значительному ухудшению усилительных свойств транзистора. Таким образом, если транзистор должен работать на высоких частотах, то лучше использовать другую схему включения.

13. Типовые схемы включения биполярного транзистора – схема с общим коллектором.

Схема включения с общим коллектором

Особенность этой схемы в том, что входное напряжение полностью передается обратно на вход, т. е. очень сильна отрицательная обратная связь.

Напомню, что отрицательной называют такую обратную связь, при которой выходной сигнал подается обратно на вход, чем снижает уровень входного сигнала. Таким образом происходит автоматическая корректировка при случайном изменении параметров входного сигнала

Коэффициент усиления по току почти такой же, как и в схеме с общим эмиттером. А вот коэффициент усиления по напряжению маленький (основной недостаток этой схемы). Он приближается к единице, но всегда меньше ее. Таким образом, коэффициент усиления по мощности получается равным всего нескольким десяткам единиц.

В схеме с общим коллектором фазовый сдвиг между входным и выходным напряжением отсутствует. Поскольку коэффициент усиления по напряжению близок к единице, выходное напряжение по фазе и амплитуде совпадает со входным, т. е. повторяет его. Именно поэтому такая схема называется эмиттерным повторителем. Эмиттерным — потому, что выходное напряжение снимается с эмиттера относительно общего провода.

Такое включение используют для согласования транзисторных каскадов или когда источник входного сигнала имеет высокое входное сопротивление (например, пьезоэлектрический звукосниматель или конденсаторный микрофон).

14. Режимы работы усилительных каскадов.

Основные параметры электронного усилителя зависят от выбранного режима работы, который задается напряжением смещения подаваемым на базу транзистора. Различают следующие основные режимы работы усилителя:

1. Режим А. В режиме А, ток в выходной цепи транзистора протекает в течение всего периода сигнала. Это достигается подачей соответствую­щего напряжения смещения Есм во входную цепь транзистора. В этом режиме напряжение смещения по абсолютной величине всегда больше амплитуды входного сигнала Поэтому форма колебаний выходного тока будет почти в точности воспроизводить изменения сигнала во входной цепи. Это обеспечивает минимальные нелинейные искажения сигнала. Однако этот режим характеризуется низким КПД (порядка 20 — 30%). Это вызвано тем, что при отсутствии входного сигнала транзистор остается открытым за счет напряжения смещения и потребляет такое же количество энергии, как и при наличии входного сигнала. Режим А применяется в маломощных каскадах, в которых важны малые нелинейные искажения, а КПД не имеет существенного значения. Обычно в этом режиме работают каска­ды предварительного уси­ления или маломощные выходные каскады.

2. Режим В. В режиме В (рис. 25.1, б) напряжение смещения равно нулю и при отсутствии входного сигнала транзистор закрыт.

При подаче на вход каскада переменного на­пряжения сигнала поло­жительная полуволна бу­дет вызывать появление выходного тока через тран­зистор; при отрицатель­ной полуволне входного напряжения ток в выход­ной цепи отсутствует. Та­ким образом, выходной ток будет иметь форму импульсов. Искаженная форма ыходного тока обуслов­ливает чрезмерные нелинейные искажения.

Преимуществом усилителя, работающего в режи­ме В, является более высокий КПД (60 — 70%) по сравнению с усилителем, работающим в режиме А. Это объясняется тем, что в отсутствии сигнала выходной ток транзистора практически равен нулю, а энергия источника питания расходуется только во время усиления сигнала.

В режиме В высок уровень нелинейных искажений, поэтому он используется в двухтактных схемах, компенсирующих эти недостатки и позволяющих получить большую выходную мощность при высоком КПД

3. Режим АВ. Режим АВ (рис. 25.1, в) является промежуточным между режимами А и В. Он более экономичен, чем А (КПД 40 — 50%), и характеризуется меньшими нели­нейными искажениями, чем В. Режим АВ также применяется в двухтактных усилителях мощности.

4. Режимы С и Д. В режимах С и Д смещение осуществляется в обратном направлении и ток в выходной цепи протекает менее половины периода входного сигнала. Каскад усиления при отсутствии сигнала и при его малых значениях не работает, поэтому усилитель потребляет от источника питания меньше энергии, чем в режиме В. В режимах С и Д усилители не воспроизводят весь период усиливаемого сигнала. Это искажает сигнал. Поэтому в усилителях с малыми искажениями режимы С и Д не применяется. Они находят применение в радиопередающих устройствах.

Читайте также:  Современные плиты для кухни

15. Что представляет собой дифференциальный каскад?

Дифференциальный каскад – это схема, используемая для усиления разности напряжений двух входных сигналов. В идеальном случае выходной сигнал не зависит от уровня каждого из входных сигналов, а определяется только их разностью.

На рис. 2.14 показана схема ДК на биполярных транзисторах. Схема содержит два плеча, включающих транзисторы VT1 и VТ2 и резисторы
Rк1 = Rк2 и токозадающий резистор R0. Ток I0, протекающий через резистор R0, не должен зависеть от входных сигналов. Для этого сопротивление резистора R0 выбирается большим или вместо него используется транзисторный генератор тока. В схеме используются два источника питания ЕП1 и ЕП2, вторые выводы которых подключены к общей точке. Наличие двух источников питания позволяет работать с сигналами любой полярности. Если оставить один источник питания, а вторую шину питания подключить к общей точке, возможно усиление сигналов только одной полярности.

В общем случае дифференциальный каскад имеет два входа и два выхода, напряжения на которых Uвх1, Uвх2, Uвх1, Uвх2 отсчитываются от общей точки.

Различают синфазные и дифференциальные входные сигналы. Когда уровни сигналов на обоих входах равны (Uвх1 = Uвх2 = Uвх сф), такие сигналы называют синфазными. Роль синфазных сигналов обычно играют помехи. Если источник сигнала включен между входами ДК, то такой сигнал называют дифференциальным (разностным) Uвх д = Uвх1 – Uвх2. При дифференциальном включении входной сигнал делится пополам между одинаковыми транзисторами VТ1 и VТ2, причем составляющие напряжений на входах ДК относительно общей точки противоположны по знаку, или

и . (2.6)

Дифференциальный каскад должен эффективно усиливать дифференциальные сигналы и ослаблять синфазные.

Выходное напряжение может сниматься между выходами схемы; тогда оно называется выходным дифференциальным (или двухфазным) напряжением. При этом необходимо, чтобы следующий каскад имел дифференциальный вход. Кроме того, часто используют однофазный выход – снимают выходное напряжение между одним из выходов и общей точкой, при этом половина полезного сигнала, действующего на оставшемся выходе, не используется.

Рассмотрим преобразование синфазного сигнала в ДК. Пусть на входы схемы (рис. 2.14) подано синфазное напряжение (Uвх1= Uвх2= Uвхсф). В качестве выходного сигнала будем рассматривать однофазное напряжение на первом выходе.

Для анализа воспользуемся эквивалентной схемой, приведенной на рис. 2.15, содержащей одну половину ДК. Поскольку через транзисторVT1 протекает половина тока I0, резистор в эмиттерной цепи имеет сопротивление 2R0 (второе сопротивление 2R0 обес­печивает ток второй половины ДК).

Схема на рис. 2.15 является усилительным каскадом с ОЭ, рассмотренным ранее. Воспользуемся формулой для расчета коэффициента усиления по напряжению

(2.7)

Из (2.7) видно, что если R0 >>Rк, то КUсф

Дата добавления: 2016-07-29 ; просмотров: 2124 | Нарушение авторских прав

Автор: Владимир Васильев · Опубликовано 9 сентября 2015 · Обновлено 29 августа 2018

Приветствую вас дорогие друзья! Сегодня речь пойдет о биполярных транзисторах и информация будет полезна прежде всего новичкам. Так что, если вам интересно что такое транзистор, его принцип работы и вообще с чем его едят, то берем стул по удобнее и подходим поближе.

Продолжим, и у нас тут есть содержание, будет удобнее ориентироваться в статье 🙂

Виды транзисторов

Транзисторы бывают в основном двух видов: биполярные транзисторы и полевые транзисторы. Конечно можно было рассмотреть все виды транзисторов в одной статье, но мне не хочется варить кашу у вас в голове. Поэтому в этой статье мы рассмотрим исключительно биполярные транзисторы а о полевых транзисторах я расскажу в одной из следующих статей. Не будем все мешать в одну кучу а уделим внимание каждому, индивидуально.

Биполярный транзистор

Биполярный транзистор это потомок ламповых триодов, тех что стояли в телевизорах 20 -го века. Триоды ушли в небытие и уступили дорогу более функциональным собратьям — транзисторам, а точнее биполярным транзисторам.

Триоды за редким исключением применяют в аппаратуре для меломанов.

Биполярные транзисторы выглядеть могут так.

Как вы можете видеть биполярные транзисторы имеют три вывода и конструктивно они могут выглядеть совершенно по разному. Но на электрических схемах они выглядят простенько и всегда одинаково. И все это графическое великолепие, выглядит как-то так.

Это изображение транзисторов еще называют УГО (Условное графическое обозначение).

Причем биполярные транзисторы могут иметь различный тип проводимости. Есть транзисторы NPN типа и PNP типа.

Отличие n-p-n транзистора от p-n-p транзистора состоит лишь в том что является «переносчиком» электрического заряда (электроны или «дырки» ). Т.е. для p-n-p транзистора электроны перемещаются от эмиттера к коллектору и управляются базой. Для n-p-n транзистора электроны идут уже от коллектора к эмиттеру и управляются базой. В итоге приходим к тому, что для того чтобы в схеме заменить транзистор одного типа проводимости на другой достаточно изменить полярность приложенного напряжения. Или тупо поменять полярность источника питания.

У биполярных транзисторов есть три вывода: коллектор, эмиттер и база. Думаю, что по УГО будет сложно запутаться, а вот в реальном транзисторе запутаться проще простого.

Обычно где какой вывод определяют по справочнику, но можно просто прозвонить транзистор мультиметром. Выводы транзистора звонятся как два диода, соединенные в общей точке (в области базы транзистора).

Слева изображена картинка для транзистора p-n-p типа, при прозвонке создается ощущение (посредством показаний мультиметра ), что перед вами два диода которые соединены в одной точке своими катодами. Для транзистора n-p-n типа диоды в точке базы соединены своими анодами. Думаю после экспериментов с мультиметром будет более понятно.

Принцип работы биполярного транзистора

А сейчас мы попробуем разобраться как работает транзистор. Я не буду вдаваться в подробности внутреннего устройства транзисторов так как эта информация только запутывает. Лучше взгляните на этот рисунок.

Читайте также:  Сегмент для мозаично шлифовальных машин

Это изображение лучше всего объясняет принцип работы транзистора. На этом изображении человек посредством реостата управляет током коллектора. Он смотрит на ток базы, если ток базы растет то человек так же увеличивает ток коллектора с учетом коэффициента усиления транзистора h21Э. Если ток базы падает, то ток коллектора также будет снижаться — человек подкорректирует его посредством реостата.

Эта аналогия не имеет ничего общего с реальной работой транзистора, но она облегчает понимание принципов его работы.

Для транзисторов можно отметить правила, которые призваны помочь облегчить понимание. (Эти правила взяты из книги П. Хоровица У.Хилла «Искусство схемотехники»).

  1. Коллектор имеет более положительный потенциал , чем эмиттер
  2. Как я уже говорил цепи база — коллектор и база -эмиттер работают как диоды
  3. Каждый транзистор характеризуется предельными значениями, такими как ток коллектора, ток базы и напряжение коллектор-эмиттер.
  4. В том случае если правила 1-3 соблюдены то ток коллектора Iк прямо пропорционален току базы Iб. Такое соотношение можно записать в виде формулы.

Из этой формулы можно выразить основное свойство транзистора — небольшой ток базы управляет большим током коллектора.

-коэффициент усиления по току.

Его также обозначают как

Исходы из выше сказанного транзистор может работать в четырех режимах:

  1. Режим отсечки транзистора — в этом режиме переход база-эмиттер закрыт, такое может произойти когда напряжение база-эмиттер недостаточное. В результате ток базы отсутствует и следовательно ток коллектора тоже будет отсутствовать.
  2. Активный режим транзистора — это нормальный режим работы транзистора. В этом режиме напряжение база-эмиттер достаточное для того, чтобы переход база-эмиттер открылся. Ток базы достаточен и ток коллектора тоже имеется. Ток коллектора равняется току базы умноженному на коэффициент усиления.
  3. Режим насыщения транзистора — в этот режим транзистор переходит тогда, когда ток базы становится настолько большим, что мощности источника питания просто не хватает для дальнейшего увеличения тока коллектора. В этом режиме ток коллектора не может увеличиваться вслед за увеличением тока базы.
  4. Инверсный режим транзистора — этот режим используется крайне редко. В этом режиме коллектор и эмиттер транзистора меняют местами. В результате таких манипуляций коэффициент усиления транзистора очень сильно страдает. Транзистор изначально проектировался не для того, чтобы он работал в таком особенном режиме.

Для понимания того как работает транзистор нужно рассматривать конкретные схемные примеры, поэтому давайте рассмотрим некоторые из них.

Транзистор в ключевом режиме

Транзистор в ключевом режиме это один из случаев транзисторных схем с общим эмиттером. Схема транзистора в ключевом режиме применяется очень часто. К этой транзисторной схеме прибегают к примеру когда нужно управлять мощной нагрузкой посредством микроконтроллера. Ножка контроллера не способна тянуть мощную нагрузку, а транзистор может. Получается контроллер управляет транзистором, а транзистор мощной нагрузкой. Ну а обо всем по порядку.

Основная суть этого режима заключается в том, что ток базы управляет током коллектора. Причем ток коллектора гораздо больше тока базы. Здесь невооруженным взглядом видно, что происходит усиление сигнала по току. Это усиление осуществляется за счет энергии источника питания.

На рисунке изображена схема работы транзистора в ключевом режиме.

Для транзисторных схем напряжения не играют большой роли, важны лишь токи. Поэтому, если отношение тока коллектора к току базы меньше коэффициента усиления транзистора то все окей.

В этом случае даже если к базе у нас приложено напряжение в 5 вольт а в цепи коллектора 500 вольт, то ничего страшного не произойдет, транзистор будет покорно переключать высоковольтную нагрузку.

Главное чтобы эти напряжения не превышали предельные значения для конкретного транзистора (задается в характеристиках транзистора).

Чтож, теперь давайте попробуем рассчитать значение базового резистора.

На сколько мы знаем, что значение тока это характеристика нагрузки.

Мы не знаем сопротивления лампочки, но мы знаем рабочий ток лампочки 100 мА. Чтобы транзистор открылся и обеспечил протекание такого тока, нужно подобрать соответствующий ток базы. Ток базы мы можем корректировать меняя номинал базового резистора.

Так как минимальное значение коэффициента усиления транзистора равно 10, то для открытия транзистора ток базы должен стать 10 мА.

Ток который нам нужен известен. Напряжение на базовом резисторе будет Такое значение напряжения на резисторе получилось из-зи того, что на переходе база-эмиттер высаживается 0,6В-0,7В и это надо не забывать учитывать.

В результате мы вполне можем найти сопротивление резистора

Осталось выбрать из ряда резисторов конкретное значение и дело в шляпе.

Теперь вы наверное думаете, что транзисторный ключ будет работать так как нужно? Что когда базовый резистор подключается к +5 В лампочка загорается, когда отключается -лампочка гаснет? Ответ может быть да а может и нет.

Все дело в том, что здесь есть небольшой нюанс.

Лампочка в том случае погаснет, когда потенциал резистора будет равен потенциалу земли. Если же резистор просто отключен от источника напряжения, то здесь не все так однозначно. Напряжение на базовом резисторе может возникнуть чудесным образом в результате наводок или еще какой потусторонней нечисти 🙂

Чтобы такого эффекта не происходило делают следующее. Между базой и эмиттером подключают еще один резистор Rбэ. Этот резистор выбирают номиналом как минимум в 10 раз больше базового резистора Rб (В нашем случае мы взяли резистор 4,3кОм).

Когда база подключена к какому-либо напряжению, то транзистор работает как надо, резистор Rбэ ему не мешает. На этот резистор расходуется лишь малая часть базового тока.

В случае, когда напряжение к базе не приложено, происходит подтяжка базы к потенциалу земли, что избавляет нас от всяческих наводок.

Вот в принципе мы разобрались с работой транзистора в ключевом режиме, причем как вы могли убедиться ключевой режим работы это своего рода усиление сигнала по напряжению. Ведь мы с помощью малого напряжения в 5В управляли напряжением в 12 В.

Читайте также:  Правила присвоения квалификации оператор станка с чпу

Эмиттерный повторитель

Эмиттерный повторитель является частным случаем транзисторных схем с общим коллектором.

Отличительной чертой схемы с общим коллектором от схемы с общим эмиттером (вариант с транзисторным ключем) является то, что эта схема не усиливает сигнал по напряжению. Что вошло через базу, то и вышло через эмиттер, с тем же самым напряжением.

Действительно допустим приложили к базе мы 10 вольт, при этом мы знаем что на переходе база-эмиттер высаживается где-то 0,6-0,7В. Выходит что на выходе (на эмиттере, на нагрузке Rн) будет напряжение базы минус 0,6В.

Получилось 9,4В, одним словом почти сколько вошло столько и вышло. Убедились, что по напряжению эта схема нам сигнал не увеличит.

«В чем же смысл тогда таком включении транзистора?»- спросите вы. А вот оказывается эта схема обладает другим очень важным свойством. Схема включения транзистора с общим коллектором усиливает сигнал по мощности. Мощность это произведение тока на напряжение, но так как напряжение не меняется то мощность увеличивается только за счет тока! Ток в нагрузке складывается из тока базы плюс ток коллектора. Но если сравнивать ток базы и ток коллектора то ток базы очень мал по сравнению с током коллектора. Получается ток нагрузки равен току коллектора. И в результате получилась вот такая формула.

Теперь я думаю понятно в чем суть схемы эмиттерного повторителя, только это еще не все.

Эмиттерный повторитель обладает еще одним очень ценным качеством — высоким входным сопротивлением. Это означает, что эта транзисторная схема почти не потребляет ток входного сигнала и не создает нагрузки для схемы -источника сигнала.

Для понимания принципа работы транзистора этих двух транзисторных схем будет вполне достаточно. А если вы еще поэкспериментируете с паяльником в руках то прозрение просто не заставит себя ждать, ведь теория теорией а практика и личный опыт ценнее в сотни раз!

Где транзисторы купить?

Как и все другие радиокомпоненты транзисторы можно купить в любом ближайшем магазине радиодеталей. Если вы живете где-нибудь на окраине и о подобных магазинах не слышали (как я раньше) то остается последний вариант — заказать транзисторы в интернет- магазине. Я сам частенько заказываю радиодетали через интернет-магазины ведь в обычном оффлайн магазине может чего-нибудь просто не оказаться.

Впрочем если вы собираете устройство чисто для себя то можно не париться а добыть из старой, отслужившей свое техники и так сказать вдохнуть в старый радиокомпонет новую жизнь.

Чтож друзья, а на этом у меня все. Все, что планировал я сегодня вам рассказал. Если остались какие-либо вопросы, то задавайте их в комментариях, если вопросов нет то все равно пишите комментарии, мне всегда важно ваше мнение. Кстати не забывайте, что каждый кто впервые оставит комментарий получит подарок.

Также обязательно подпишитесь на новые статьи, потому что дальше вас ждет много интересного и полезного.

Желаю вам удачи, успехов и солнечного настроения!

Схема включения транзистора с общей базой (ОБ) изображена на рис. 5.8. Входным электродом является эмиттер (входной сигнал Uвx приложен к переходу эмиттер – база, база по переменному сигналу заземлена). Выходным электродом является коллектор; с учетом того что база по переменному сигналу заземлена, можно считать, что Uвыx = к, т. е. Uвыx равно переменному напряжению между коллектором и базой. База является, таким образом, «общим электродом» для входного и выходного сигналов, откуда и происходит название схемы. Назначение элементов Rб1, Rб2, Сp1, Сp2 и Rк в схеме с ОБ такое же, как и в схеме с ОЭ. Дополнительным, в сравнении со схемой с ОЭ, элементом является базовая емкость (Cб), которая обеспечивает заземление базы по переменному сигналу.

Схема работает следующим образом. Когда Uвx имеет положительную полярность, Э возрастает, в результате чего Uбэ = б – э снижается и pn-переход эмиттер – база частично закрывается. Ток Iэ уменьшается, в результате уменьшается и ток IкIэ, снижается падение напряжения на сопротивлении Rк, а потенциал коллектора к = ЕIкRк возрастет. Так как кUвыx, то при увеличении мгновенного значения Uвx увеличивается и мгновенное значение Uвыx. При отрицательной полярности Uвx происходят аналогичные процессы.

Входное сопротивление схемы Rвх = Rэ׀׀rбэ, где rбэ – эквивалентное сопротивление открытого pn-перехода эмиттер – база транзистора: оно чрезвычайно мало и обычно не превышает нескольких десятков Ом. Выходное сопротивление Rвых ненагруженной схемы определяется параллельным соединением Rк и эквивалентным сопротивлением rкэ транзистора, включающим закрытый pn-перехода коллектор – база, и поэтому велико. Однако если один каскад с общей базой в целях увеличения коэффициента усиления нагрузить на такой же, то выходное сопротивление резко снижается и становится меньшим, чем Rвх. Коэффициент усиления по напряжению

Сравнительный анализ параметров приводит к выводу о том, что схема с ОБ во многих отношениях уступает схеме с ОЭ. Этим обусловлен тот факт, что для усиления сигналов обычно применяют транзисторные схемы с общим эмиттером.

Схема с общей базой предпочтительнее лишь в случае, когда надо при небольшом усилении иметь нулевой сдвиг фаз при прохождении сигнала. Это можно обеспечить и при последовательном соединении двух схем с общим эмиттером (Δ = Δ1 + Δ2 = 180° + 180° = 360° = 0°), но такое схемотехническое решение неэкономично.

Отправить ответ

  Подписаться  
Уведомление о
Adblock
detector