Схема стабилизатора напряжения на lm317

Интегральный, регулируемый линейный стабилизатор напряжения LM317 как никогда подходит для проектирования несложных регулируемых источников и блоков питания, для электронной аппаратуры, с различными выходными характеристиками, как с регулируемым выходным напряжением, так и с заданным напряжением и током нагрузки.

Для облегчения расчета необходимых выходных параметров существует специализированный LM317 калькулятор, скачать который можно по ссылке в конце статьи вместе с datasheet LM317.

Технические характеристики стабилизатора LM317:

  • Обеспечения выходного напряжения от 1,2 до 37 В.
  • Ток нагрузки до 1,5 A.
  • Наличие защиты от возможного короткого замыкания.
  • Надежная защита микросхемы от перегрева.
  • Погрешность выходного напряжения 0,1%.

Эта не дорогая интегральная микросхема выпускается в корпусе TO-220, ISOWATT220, TO-3, а так же D2PAK.

Назначение выводов микросхемы:

Онлайн калькулятор LM317

Ниже представлен онлайн калькулятор для расчета стабилизатора напряжения на основе LM317. В первом случае, на основе необходимого выходного напряжения и сопротивления резистора R1, производится расчет резистора R2. Во втором случае, зная сопротивления обоих резисторов (R1 и R2), можно вычислить напряжение на выходе стабилизатора.

Калькулятор для расчета стабилизатора тока на LM317 смотрите здесь.

Примеры применения стабилизатора LM317 (схемы включения)

Стабилизатор тока

Данный стабилизатор тока можно применить в схемах различных зарядных устройств для аккумуляторных батарей или регулируемых источников питания. Стандартная схема зарядного устройства приведена ниже.

В данной схеме включения применяется способ заряда постоянным током. Как видно из схемы, ток заряда зависит от сопротивления резистора R1. Величина данного сопротивления находится в пределах от 0,8 Ом до 120 Ом, что соответствует зарядному току от 10 мА до 1,56 A:

Источник питания на 5 Вольт с электронным включением

Ниже приведена схема блока питания на 15 вольт с плавным запуском. Необходимая плавность включения стабилизатора задается емкостью конденсатора С2:

Регулируемый стабилизатор напряжения на LM317

Схема включения с регулируемым выходным напряжением

lm317 калькулятор

Для упрощения расчета номинала резистора можно использовать несложный калькулятор, который поможет рассчитать необходимые номиналы не только для LM317, но и для L200, стабилитрона TL431, M5237, 78xx.

Скачать datasheet и калькулятор для LM317 (319,9 Kb, скачано: 40 214)

Аналог LM317

К аналогам стабилизатора LM317 можно отнести следующие стабилизаторы:

  • GL317
  • SG31
  • SG317
  • UC317T
  • ECG1900
  • LM31MDT
  • SP900
  • КР142ЕН12 (отечественный аналог)
  • КР1157ЕН1 (отечественный аналог)

31 комментарий

Интересная статья! Спасибо!

Спасибо. Только ноги перепутали. У 317 1н-ADJ, 3н-INP, 2н — OUTP.
Смотреть мордой к себе, счет слева направо.

Ничего не попутано.На схеме всё правильно.Учите технический английский язык. 1-управляющий, 2-выход, 3-вход
На схеме всё правильно.

Регулируемый стабилизатор напряжения на LM317- схемка работает , только выводы 2 и 3 попутаны местами в схеме.

С какого перепугу они перепутаны? На схеме всё правильно.Внимательнее смотрите даташит на стабилизатор.

А в схеме Регулируемый стабилизатор напряжения на LM317 какой нужен трансформатор? На вторичной обмотке сколько вольт надо?

Разница между входным и выходным напряжением должна составлять 3,2 вольта, то есть, если тебе необходимо 12 вольт на выходе, то на вход нужно подать 15,2 вольта

Подскажите за что отвечает резистор (200 Ом — 240 Ом) между первой и второй ногой микросхемы ?
Сейчас собрал простейший стабилизатор на 5,15 V , резистор между 1 и 2 ногой — 680 Ом , между второй и третьей 220 Ом = на выходе сила тока всего 0,45 А . Для зарядки смартфона мне нужна сила тока 1 А .

Резисторы R1 и R2 — делитель напряжения. Подключите 220 Ом (R1) к 1 и 2 выводу, 680 Ом (R2) к 1 выводу и минусу питания.

Резисторы R1 и R2 можно подобрать и другого номинала?

да, рассчитать можно здесь

можно ли совместить на одной lm317, регулировку тока и напряжения,

Можно,я так делал.Сначала собираем регулятор напряжения,потом между adj и out ставим переменный резистор только большой мощности вата на 2. мультиметром настраиваеш всю поделку.а лучше использовать две 317 . 1-я как регулятор напр. 2-я как рег.тока. и вперед. Если собирать на 317-х лабораторник то можно парралельно их ставить (с ограничительными резисторами на выходе по 0.2 ом )например три или пять штук 317-х,только собирать с защитами (диоды )по полноценной схеме .у меня таких два штуки есть один на одной ,для маломощных нагрузок ,второй на двух .главное что б транс был нормальный мощью ват 30-50.и хватит за глаза .не варить же им !

Евгений, может скинешь схемку (или ссылку)на параллельное включение ЛМ 317 для ПБ? Я собрал, 5 штук поставил, греются не равномерно. Попробую поставлю выравнивающие резисторы по 0,2 Ома. Транс 150 Ватт, до 30В. Можно, конечно, купить БП на Али. Да решил молодость вспомнить (мне 68).

Читайте также:  Тех условия подключения электричества 380 образец

Большое Спасибо за статью.

Здравствуйте! Под рукой стабилизаторы 7812 и 7912.
Можно их применить для понижения напряжения с учетом вышеуказанного расчета и схемы?

Можно лишь изловчиться на напряжение более высокое, чем номинальное (для 7812 — больше 12 В). Для этого в цепь 2-го вывода включают N число диодов, тогда приблизительно получится Uвых=12+0,65N; вместо диодов можно подобрать резистор. При этом корпус микросхемы должен быть изолирован от общего провода вопреки стандартному включению.

Я так понимаю-если стабилизатор не 317 ,а на рассчитанное своё напряжение например 7812,то меньше чем 12 никак не получить,а вот больше по этой методике пожалуйста.

Сделал, работает хорошо.Регулирует от 1,2 В до 35В. После 0,5 А греется. Поставил на радиатор. Решил добавить два транзистора кт 819, поставил уравнивающие резисторы по 0,5 Ом. Регулировка от 0 до 10В — нормально. Если до 20В, то регулировка начинается от 10 и до 20, при 30В — от 20 до 30В, т.е. не от 1,3В. Может поможете? Может ещё кто посоветует. Хотелось бы сделать БП на ЛМ317 + транзисторы. Вам спасибо большое. А может сделать как советует jenya900?

Спасибо за схему,а как увеличить ток до10А?

Как ограничить напряжение на выходе максим. 9вольт, при переменном резисторе 8кОм. Спасибо

Каков температурный диапазон эксплуатации LM317T?

Купил гравёр. Сразу не запустился. Разобрал. Стоит линейный стабилизатор напряжения на LM317T. R1=100 Om, R2= последовательно 150 Om и переменное 1кОм. Между выходом и входом LM317T стоит конденсатор. Все компоненты нано. При включении заряжается ёмкость и когда напряжение достигает около 3В включается. Это где-то пол минуты. Зачем стоит ёмкость? Питание usb 5B. На выходе около 2В. Как всё это исправить? Мне нужно на выходе 3В. Менять переменное R нельзя. Можно менять R1, R2, C1.

Кто-нибудь пробовал параллелить микросхемы?

Ну пока сам не сделаешь, никто не пошевелится рассказать.
Соединил в параллель вчистую (т.е. ножка к ножке без всяких уравнивающих сопротивлений) 5 штук. Нагрузил на 3,8А (больше не требовалось), напряжение на выходе просело с 14В до 13,8В. Приемлемо.
Так что годится такой вариант.

Я всегда паралелю, чтоб запас был, если нагрузка большая. Всё хорошо работает.

Помогите чайнику. Если в стабилизаторе напряжения на вход подать напряжение меньше, чем установленное на выход, что будет на выходе? Нужно, чтобы схема начала пропускать ток при росте напряжения, начиная с 12 вольт.

Микросхема ни работает как «клапан»! Она ни откроется резко после превышения напряжения на входе микросхемы. Если на выходе у тебя настроено 12в, а на вход подать 9. То на выходе стабилизированного тока ни будет, выйдут те же твои 9 вольт примерно, даже меньше ( минус опорное напряжение микросхемы)

Привет. Помогите сделать бп на lm317 и поливике irf640. Нужна схема

Использование регулятора напряжения LM317

Особенности LM317

— Микросхема может работать в широком диапазоне выходных напряжений от 1.2 до 37 В.
— Микросхема обеспечивает выходной ток до 1.5 А.
— Максимальная рассеиваемая мощность до 20 Вт.
— Микросхема имеет встроенную защиту от перегрузок по току и от короткого замыкания.
— Встроенная защита от перегрева.

Минимальное включение подразумевает использование двух внешних резисторов. Отношение сопротивлений этих резисторов задает выходное напряжение регулятора, и двух конденсаторов на входе и выходе микросхемы.

Наиболее важные электрические параметры микросхемы — это опорное напряжение Vref и тое в цепи управляющего вывода Iadj. опорное напряжение — это напряжение, которое микросхема стремиться поддерживать на резисторе R1, то есть, если замкнуть накоротко резистор R2, то на выходе регулятора мы получит это самое опорное напряжение. Это напряжение может немного меняться от экземпляра к экземпляру и составляет 1.2 … 1.3 В ( в среднем 1.25В.) Чем выше падение напряжение на резисторе R2, тем выше выходное напряжение регулятора. Вычислить выходное напряжение просто, оно равно падению напряжения на R2 + 1.25 (Vref).

Что касается второго параметра Iadj, то это фактически паразитный ток. Чем он меньше, тем лучше. Изготовители микросхемы заявляют этот ток от 50 до 100 микроампер, но в действительности может быть до 500 мкА. Поэтому чтобы обеспечить хорошую стабильность выходного напряжения, ток через делитель R1-R2 должен быть не менее 5 мА. Можно оттолкнуться от сопротивления резистора R1 и высчитать R2 по формуле:

Затем уточнить номиналы в реальных условиях в работающей схеме.

Приведем пример номиналов для пары стандартных напряжений:

Для напряжения 5В R1 = 120 Ом, R2 = 360 Ом
Для напряжения 12В R1 = 240Ом, R2 = 2000 Ом

Однако, для типовых напряжений вроде 5, 12, 15 и т.д. вольт проще и удобнее использовать регуляторы на фиксированные напряжения вроде 7805 или 7812. Использовать 317 для этих целей лучше только в том случае если регулятора на фиксированное напряжение не оказалось под рукой, а сделать источник питания нужно срочно.

Читайте также:  Прибор для измерения громкости звука

Конфигурация выводов микросхемы LM317 в разных корпусах

Регулируемый источник питания на микросхеме LM317

Источник питания с плавным запуском. Как видим, к стандартной схеме добавляется биполярный транзистор структуры PNP, резистор на 50 кОм, кремниевый диод и электролитический конденсатор на 25 мкФ. В момент включения такого источника на его выходе минимальное напряжение, которое плавно увеличивается до установленного 15В по мере заряда конденсатора C1.

Также легко сделать на этой микросхеме источник с несколькими фиксированными напряжениями, которые можно переключать программно, с помощью микроконтроллера. Для этого в управляющую цепь включаем цепочки из транзисторов и резисторов, как показано на рисунке ниже. Базы транзисторов соединяем с портами микроконтроллера. При подаче высокого уровня на каждый последующий транзистор он будет подключать параллельно R2 еще один дополнительный резистор и выходное напряжение будет уменьшаться:

LM317 можно использовать не только для стабилизации напряжения, но и в качестве стабилизатора тока. Схема получается еще проще, так как здесь нужен всего один единственный внешний резистор, задающий выходной ток:

На LM317 можно сделать несложное зарядное устройство для аккумуляторов с номинальным напряжением 12В. Номиналы резисторов R1 и R2 задают конечное напряжение на заражаемой батарее, а резистор Rs устанавливает максимальный зарядный ток. Это схема из даташита на микросхему:

Двуполярный регулируемый источник питания (например как основа для лабораторного блока питания) можно собрать на двух LM317, но тогда придется использовать трансформатор с двумя обмотками и два выпрямителя, то есть каналы источника питания нужно будет делать независимыми друг от друга. Это хорошее, но дорогое решение. Можно упростить себе жизнь, если использовать микросхему LM337 — аналог микросхемы LM317, но на отрицательное напряжение. Тогда схема нашего регулируемого двуполярного источника может выглядеть например так:

Здесь дополнительные мощные транзисторы VT1 и VT2 позволяют увеличить выходной ток стабилизаторов. нужно выбирать транзисторы согласно тому току, на который вы рассчитываете источник питания.

На следующей схеме изображен регулируемый источник питания на ток до 20 ампер и напряжение от 1.3 до 12 вольт. Транзисторы и микросхему LM317 необходимо установить на радиаторы. Резисторы в эмиттерных цепях транзисторов должны быть рассчитаны на мощность не менее 5 Вт.

Качественный блок питания с регулируемым выходным напряжением – мечта каждого начинающего радиолюбителя. В быту такие устройства применяются повсеместно. К примеру, взять любое зарядное устройство для телефона или ноутбука, блок питания детской игрушки, игровой приставки, стационарного телефона, многих других бытовых приборов.

Что касается схемной реализации, конструкция источников может быть разной:

  • с силовыми трансформаторами, полноценным диодным мостом;
  • импульсные преобразователи сетевого напряжения с выходным регулируемым напряжением.

Но чтобы источник был надежным, долговечным, для него лучше выбирать надежную элементную базу. Здесь то начинают возникать трудности. Например, выбирая в качестве регулирующих, стабилизирующих компонентов отечественного производства, порог нижнего напряжения ограничивается 5 В. А что делать, если требуется 1,5 В? В таком случае лучше воспользоваться импортными аналогами. Тем более они более стабильны и практически не греются при работе. Одним из самых широко употребляемых является интегральный стабилизатор lm317t.

Основные характеристики, топология микросхемы

Микросхема lm317 является универсальной. Она может быть использована как стабилизатор с постоянно установленным выходным напряжением и как регулируемый стабилизатор с высоким КПД. МС обладает высокими практическими характеристиками, делающими возможным его использование в различных схемах зарядных устройств или лабораторных блоков питания. При этом вам даже не придется волноваться за надежность работы при критических нагрузках, потому что микросхема оснащена внутренней защитой от короткого замыкания.

Это весьма хорошее дополнение, потому что максимальный выходной ток стабилизатора на lm317 составляет не более 1,5 А. Но наличие защиты не даст вам ее непреднамеренно спалить. Для повышения тока стабилизации необходимо использование дополнительных транзисторов. Таким образом, можно регулировать токи до 10 и более А при использовании соответствующих компонентов. Но об этом поговорим позже, а в таблице ниже представим основные характеристики компонента.

Параметр Значение
Uоп. 1,25 В
Макс разница между Uвых. и Uвх. Не более 40 В
Мин разница между Uвых. и Uвх. Не менее 1,3 В
Макс. Uвых. 37 В
Мин. Uвых. 1,25 В
Iвых. макс. 1,5 А
Iрег До 100 мкА
Пульсации Не более 65 дБ
Тип корпуса ТО-220
Предел рабочих температур От 0 до +125 градусов

Цоколевка микросхемы

Изготовлена интегральная микросхема в стандартном корпусе ТО-220 с теплоотводом, устанавливаемым на радиатор. Что касается нумерации выводов, они расположены по ГОСТу слева направо и имеют следующее значение:

Номер вывода Название вывода Значение
1 Adj Регулировка
2 Out Выход
3 In Вход

Вывод 2 соединен с теплоотводом без изолятора, поэтому в устройствах, если радиатор контактирует с корпусом, необходимо использовать изоляторы из слюды или любого другого теплопроводящего материала. Это важный момент, потому что можно случайно закоротить выводы, а на выходе микросхемы просто ничего не будет.

Аналоги lm317

Иногда найти конкретно требуемую микросхему на рынке не удается возможным, тогда можно воспользоваться подобными ей. Среди отечественных компонентов на lm317 аналог есть достаточно мощный и производительный. Им является микросхема КР142ЕН12А. Но при ее использовании стоит учесть тот факт, что она неспособна обеспечить напряжение меньше 5 В на выходе, поэтому если это важно, придется опять-таки использовать дополнительный транзистор или же найти именно требуемый компонент.

Читайте также:  Как правильно спиливать деревья бензопилой

Что касается форм-фактора, то у КР есть столько же выводов, сколько их имеет lm317. Поэтому вам даже не придется переделывать схему готового устройства с целью подгонки параметров регулятора напряжения или неизменяемого стабилизатора. При выполнении монтажа интегральной схемы ее рекомендуется устанавливать на радиатор с хорошим теплоотводом и системой охлаждения. Что довольно часто наблюдается при изготовлении мощного светильника на светодиодах. Но при номинальной нагрузке устройство выделяет немного тепла.

Кроме отечественной интегральной схемы КР142ЕН12, выпускаются более мощные импортные аналоги, выходные токи которых в 2-3 раза больше. К таким микросхемам относятся:

  • lm350at, lm350t — 3 А;
  • lm350k — 3 А, 30 Вт в другом корпусе;
  • lm338t, lm338k — 5 А.

Производители этих компонентов гарантируют более высокую стабильность выходного напряжения, низкий ток регулирования, повышенную мощность с тем же минимальным выходным напряжением не более 1,3 В.

Особенности подключения

На lm317t схема включения довольно проста, состоит из минимального количества компонентов. При этом их число зависит от назначения устройства. Если изготавливается стабилизатор напряжения, для него потребуются следующие детали:

Rs – шунтирующее сопротивление, выполняющее также роль балласта. Выбирается значением около 0,2 Ом, если требуется обеспечить максимальный выходной ток до 1,5 А.

Резистивный делить с R1, R2, подключенный к выходу и корпусу, а со средней точки поступает регулирующее напряжение, образуя глубокую обратную связь. Благодаря чему достигается минимальный коэффициент пульсаций и высокая стабильность выходного напряжения. Их сопротивление выбирается исходя из соотношения 1:10: R1=240 Ом, R2=2,4 кОм. Это типовая схема стабилизатора напряжения с выходным напряжением 12 В.

Если требуется сконструировать стабилизатор тока, для этого понадобится еще меньше компонентов:

R1, являющееся шунтом. Им задается выходной ток, который не должен превышать 1,5 А.

Чтобы правильно рассчитать схему того или другого устройства, всегда можно использовать калькулятор lm317. Что касается расчета Rs, то его можно определить по обычной формуле: Iвых. = Uоп/R1. На lm317 стабилизатор тока светодиода получается достаточно качественный, который может быть изготовлен нескольких типов в зависимости от мощности LED:

  • для подключения одноватного светодиода с током потребления 350мА необходимо использовать Rs = 3,6 Ом. Его мощность выбирается не менее 0,5 Вт;
  • для питания трехватных светодиодов потребуется резистор сопротивлением 1,2 Ом, ток составит 1 А, а мощность рассеивания не менее 1,2 Вт.

На lm317 стабилизатор тока светодиода получается достаточно надежный, но важно правильно рассчитать сопротивление шунта и выбрать его мощность. А поможет в этом деле калькулятор. Также на светодиодах и на основе этой МС изготавливают различные мощные светильники и самодельные прожекторы.

Построение мощных регулируемых блоков питания

Внутренний транзистор lm317 недостаточно мощный, для его увеличения придется использовать внешние дополнительные транзисторы. В данном случае выбираются компоненты без ограничений, потому что управление ими требует намного меньших величин токов, которые микросхема вполне способна предоставить.

Регулируемый блок питания lm317 с внешним транзистором не сильно отличается от обычного включения. Вместо постоянного R2 устанавливается переменный резистор, а база транзистора подключается на вход микросхемы через дополнительный ограничивающий резистор, запирающий транзистор. В качестве управляемого используется биполярный ключ с проводимостью p-n-p. В таком исполнении микросхема оперирует токами порядка 10 мА.

При проектировании двухполярных источников питания потребуется использовать комплементарную пару этой микросхемы, которой является lm337. А для увеличения выходного тока применяется транзистор с проводимостью n-p-n. В обратном плече стабилизатора компоненты подключаются таким же образом, как и в верхнем. В качестве первичной цепи выступает трансформатор или импульсный блок, что зависит от качества работы схемы и ее эффективности.

Некоторые особенности работы с микросхемой lm317

При проектировании блоков питания с небольшим выходным напряжением, при котором разница между входным и выходным значением не превышает 7 В, лучше использовать другие, более чувствительные микросхемы с выходным током до 100 мА — LP2950 и LP2951. При низком падении lm317 не способна обеспечить необходимый коэффициент стабилизации, что может приводить к нежелательным пульсациям при работе.

Другие практические схемы на lm317

Кроме обычных стабилизаторов и регуляторов напряжения на основе этой микросхемы также можно изготовить цифровой регулятор напряжения. Для этого потребуется сама микросхема, набор транзисторов и несколько резисторов. Посредством включения транзисторов и по приходу цифрового кода с ПК или иного устройства изменяется сопротивления R2, что приводит и к изменению тока цепи в пределах напряжения от 1,25 до 1,3 В.

Отправить ответ

  Подписаться  
Уведомление о
Adblock
detector