Сигнализатор уровня жидкости своими руками

Схема индикатора уровня жидкости и ПП

Прибор собран на печатной плате. Транзисторы самые обычные КТ315 или 3102, но можно использовать почти любые соответствующей проводимости, резисторы для минимизации конструкции я взял smd-типа. Для питания конструкции я использовал одну батарейку типа Крона.

Из-за меняющегося давления в отопительной системе и нагрева жидкости расширительный бочек делают открытым, поэтому через какое-то время часть воды выкипает, и это приводит к остановке циркуляции воды и перегреву нагревательных элементов. Данное устройство покажет когда уровень воды снизиться ниже датчика.

Транзисторы VT1 и VT2 образуют усилитель с гальванической связью. Сопротивление R2 задает смещение на базу второго транзистора и в то-же время являясь нагрузкой первого. Резистор R3 предназначен для нагрузки VT2.

Если контакты устройства находятся в воде или иной токопроводящей жидкости, то плюс питания окажется соединен с резистором R1 через воду, поэтому на базу транзистора VT1 поступает напряжение и он отпирается, при этом VT2 остается закрытым и не инвертирующий вход операционного усилителя будет подключен к минусу через сопротивление R3. На выходе операционного усилителя будет присутствовать логический ноль и первый светодиод засветится, говоря о нормальном уровне воды.

Если уровень жидкости снизится и водяной контакт разомкнется, то напряжения смещения перехода на базе VT1 исчезнет и он будет закроется. Соответственно база VT2 будет соединена с плюсом питания и он отпирается, соединив не инвертирующий вход ОУ с плюсом, и поэтому на его выходе формируется уровень логической единицы, второй светодиод начинает сигнализировать о снижении уровня жидкости.

Индикатор уровня воды можно также подключить и к звуковой индикации. Подсоединив вывод OUT индикатора уровня к выводу блока аудио сигнализации (схема сирены).

В роли датчика подойдут обычные два провода можно применить толстый двужильный провод, оголив концы. Датчик монтируемый на необходимый нам уровень контроля.

Внешний вид датчика уровня жидкости показан на фотографиях ниже. В качестве зондов применяется проволока из нержавеющей стали, которая припаивается к контактам разъема, после чего это пространство заполняется герметиком или клеем.

В состав конструкции входят три зонда: — общий, — включение и — выключение. Изолирующие втулки изготовлены из внутренней изоляции коаксиального кабеля большого диаметра. Конструкция соединяется с блоком автоматики при помощи экранированного кабеля с двумя изолированными жилами. Экранирующая оплетка подключена к общему зонду.

В роли датчика используются два металлических стержня погруженных в жидкость. Принцип работы преобразователя основана на способности подовляющего большинства жидкостей проводить ток. Высокая чувствительность преобразователя обеспечивается применением логической микросборки КМОП на полевых транзисторах с изолированным затвором. Отечественная микросборка К561ЛА7 состоит из четырех логических элементов «И-НЕ». На DD1.1 и DD1.2 собран классический генератор прямоугольных импульсов, работающий на частоте 3 Гц.

Генератор, выполненный на DD1.3 и DD1.4, работает на частоте 1 кГц. Если погружаемый датчик соприкасается с жидкостью, емкость C1 начинает заряжатся и запускает генератор DD1.1 – DD1.2, который, каждые 350 миллисекунд запускает генератор на DD1.3 – DD1.4. Поэтому на выходе радиолюбительской самоделки появляется генерируется прерывистый звуковой сигнал. Чувствительность можно настраивать подбором сопротивления R1. Чем больше его номинал, тем выше чувствительность. Емкость C1 защищает высокоомный вход микросборки от вероятных помех.

Более простой вариант схемы:

Для сборки этого датчика уровня воды вам потребуется: полевой транзистор IRF540N или аналогичный, например IRFZ44N; Любой Активный зуммер (пищалка); Сопротивление на 1 МОм; Источник питания 12В, например аккумуляторная батарея.

Принцип работы схемы для контроля уровня жидкости показан в видео инструкции ниже:

Нужно измерить уровень жидкости в больших резервуарах — колодце, баке или открытом контейнере? Это руководство поможет вам собрать, с использованием дешевой электроники, сонарный датчик уровня воды в резервуаре.

Приложенный набросок отображает общий вид того, как будет выглядеть проект. Недалеко от нашего летнего домика находится большой колодец, из которого мы берём воду для питья и домашних нужд. Однажды мы с братом говорили о том, как наш дед в течение всего лета вручную измеряет уровень воды, чтобы отслеживать потребление и её приток, чтобы избежать переполнения колодца.

Мы подумали, что с использованием современной электроники можно изменить эту традицию и сделать её более автоматизированной. При помощи нескольких программистских уловок, мы смогли использовать Ардуино и ультразвуковой модуль для измерения расстояния до водной поверхности (I) с достаточной надежностью и точностью до +/- нескольких миллиметров. Это значит, что мы смогли рассчитать объем (V), используя диаметр колодца (D) и его глубину (L) с точностью до +/- 1 литра.

Поскольку колодец располагается примерно в 25 метрах от дома, а мы хотели поместить дисплей датчика дома, мы решили использовать два Ардуино и передавать данные от одного из них к другому. Если вам захочется, то проект можно переделать под использование всего одного Ардуино. Почему мы не использовали беспроводной интерфейс? Во-первых, из за простоты использования — провод меньше подвержен порче влагой. Также потому, что мы хотели избежать использования аккумуляторов в той части, в которой располагался датчик. С помощью провода мы можем передавать как данные, так и питание по одному кабелю.

  1. Модуль Ардуино в доме — это основной модуль Ардуино. Он отправляет сигнал на Arduino в колодце, получает замеры расстояния и отображает рассчитанный объём оставшейся воды на дисплее.
  2. Модуль Ардуино в колодце и ультразвуковой модуль просто получают сигнал из дома, запускают процесс измерения и отправляют обратно информацию о расстоянии от датчика до воды. Схема встроена в непроницаемую коробку с пластиковой трубкой, прикреплённой к той стороне, где находится ультразвуковой модуль. Трубка нужна для того, чтобы снизить уровень помех, сократив поле зрения датчика таким образом, чтобы ему была видна только вода.

Шаг 1: Компоненты, тесты, программирование

В этом проекте используются следующие компоненты:

  • 2 модуля Ардуино (один для измерения уровня жидкости, второй для отображения результатов на дисплее)
  • Обычная 12V батарейка
  • Ультразвуковой модуль HC-SR04
  • Модуль LED дисплея MAX7219
  • Телефонный кабель — 25 метров, 4 жилы: питание, заземление и 2 провода для данных
  • Коробка для установки электроники
  • Горячий клей
  • Паяльник

Для того, чтобы убедиться, что все работает как надо, мы все спаяли, соединили и проверили «на коленке». В интернете есть много программ, работающих с ультразвуковыми датчиками и дисплеями, так что мы просто использовали то, что нашли в интернете, чтобы проверить, что замеренное расстояние верно (картинка 1) и что мы можем поймать ультразвуковое отражение с поверхности воды (картинка 2). Также мы проверили, что ультразвуковой датчик уровня воды передаёт данные на длинные расстояния, чтобы у нас не было проблем при установке.

Не пренебрегайте временем, проведенным за тестированием системы, так как жизненно необходимо проверить, что всё работает, перед тем, как вы запаяете всё железо в корпуса и зароете кабель.

Во время тестов мы также обнаружили, что ультразвуковой датчик иногда ловит сигналы от других частей колодца, например от стен, или трубы, через которую поступает вода. При этом измеренное расстояние было слишком маленьким по сравнению с тем, каким должно быть расстояние до воды. В силу того, что мы не смогли до конца устранить эти помехи своими руками, мы решили отбрасывать все новые замеры, которые сильно отличаются от текущего показателя. Это не было критично, так как уровень воды в колодце изменялся достаточно плавно. В начале работы, модуль делает серию замеров и выбирает наибольший полученный показатель (то есть, наименьший уровень воды) в качестве отправной точки. После этого, в дополнение к решениям о принятии и отклонении показаний, используется частичное обновление показателя, с которым сравниваются новые данные. Также важно, чтобы все эхо утихли перед тем, как начнутся первые замеры. В случае бетонного колодца это очень критично.

Финальную версию рабочего кода для обеих плат Ардуино можно найти здесь: ссылка

Шаг 2: Общественные работы

В силу того, что наш колодец располагается на расстоянии от дома, нам пришлось выкопать в газоне небольшую борозду для кабеля.

Шаг 3: Соединяем и устанавливаем все компоненты

Соедините всё также, как при тестировании — всё должно заработать. Помните о том, что пин TX на одном Ардуино соединяется с пином RX на втором модуле, и наоборот. Как видно на картинке 1, для питания модуля Ардуино в колодце, мы использовали обычный телефонный кабель.

На второй и третьей картинке видна пластиковая труба с передатчиком, помещенным за пределы трубки и ресивером, помещенным внутри неё.

Шаг 4: Калибровка

Удостоверьтесь в том, что дистанция между датчиком и поверхностью воды измерена корректно. Калибровка состоит лишь в том, чтобы замерить диаметр колодца и его полную глубину — эти данные нужны для измерения объема жидкости. Чтобы получить точные данные, мы также настроили другие параметры программы (время между замерами, параметры частичного обновления, количество изначальных замеров).

Теперь мы можем следить за тем, какой уровень воды в нашем колодце и даже отслеживать, как колодец постепенно наполняется в ночное время — и всё это отображается на экране.

Заметка: В настоящее время преобразование времени-расстояния не корректируется при изменении скорости звука из-за колебаний температуры. Это будет хорошим дополнением в будущих доработках, так как температура в колодце заметно меняется.

Рассказываю как сделать какую-либо вещь с пошаговыми фото и видео инструкциями.

Доброго времени суток уважаемые посетители и гости сайта «Радиоскот». Бывает так, что надо узнать, сколько воды осталось в какой-либо непрозрачной емкости. Например, цистерна, бочка или любая другая, закопанная в землю либо поднятая на высоту так, что не видно её содержимого. Тогда на помощь придет датчик уровня воды. Схема настолько проста, что ее может повторить даже тот, кто только взял в руки паяльник. Состоит она всего из 10 резисторов, 3 транзисторов и 3 светодиодов.


Схема индикатора уровня жидкости

Приступим к постройке схемы датчика. Сначала вырежем плату 30 мм на 45 мм. Потом нарисуем дорожки, как на фото. Рисовать желательно краской или лаком для ногтей. Но под рукой у меня оказался только маркер (хотелось бы обратить внимание, что подойдет только перманентный маркер). Если вы рисуете маркером, то лучше всех держится маркер, купленный в магазине дисков или компьютеров. Нарисовав, приступайте к травлению.

Я травил перекисью водорода, так как ни хлорного железа, ни медного купороса нет. Наливал 50 мл 3% перекиси водорода, потом клал 1 ложку соли и 2 ложки лимонной кислоты. Смешивал, пока все не растворилось. При периодическом легком покачивании протравил плату где-то минут за 50.

Приступим к пайке схемы. Для этого нам понадобятся: 3 резистора сопротивлением 10 кОм, 3 резистора сопротивлением 1 кОм, 2 зеленых и 1 красный светодиоды, 4 резистора на 300 Ом. Аккуратно все впаяв, припаиваем провода, и подключаем батарейку. Провода отрезаем через каждые 2 сантиметра.

Готово! Теперь опускаем провода в стакан и постепенно наливаем воды. Для наглядности чуть подкрасил воду. Как видим, всё отлично работает.

Когда в стакане 1/3 воды — горит только красный светодиод. Когда 2/3 — загорается еще и зеленый. А когда стакан заполнен по верхнюю линию — горят все светодиоды. в своём случае собрал схему, где всего 3 светодиода, но можно делать и больше — хоть 10. Тогда уровень воды будет виден более точно. Также хотелось бы добавить, что корпус использовал из-под корректора. Схему собрал: bkmz268

Читайте также:  Самодельные станки и приспособления для столярной мастерской

Отправить ответ

  Подписаться  
Уведомление о
Adblock
detector