Синтетические полимеры это определение

С трудом можно представить себе сегодняшнюю жизнь без полимеров – сложных синтетических веществ, которые получили широкое распространение в различных областях человеческой деятельности. Полимеры – это высокомолекулярные соединения природного либо синтетического происхождения, состоящие из мономеров, соединенных химическими связями. Мономером является повторяющееся звено цепи, которое содержит исходную молекулу.

Органические высокомолекулярные соединения

Благодаря своим уникальным свойствам высокомолекулярные соединения успешно заменяют в различных сферах жизнедеятельности такие натуральные материалы, как дерево, металл, камень, завоевывая новые области применения. Для систематизации такой обширной группы веществ принята классификация полимеров по различным признакам. К ним относится состав, способ получения, пространственная конфигурация и так далее.

Классификация полимеров по химическому составу подразделяет их на три группы:

  • Органические высокомолекулярные вещества.
  • Элементоорганические соединения.
  • Неорганические высокомолекулярные соединения.


Самую большую группу представляют органические ВМС – смолы, каучуки, растительные масла, то есть продукты животного, а также растительного происхождения. Макромолекулы этих веществ в главной цепи наряду с атомами углерода имеют атомы кислорода, азота и других элементов.

  • обладают способностями к обратной деформации, то есть эластичностью при невысоких нагрузках;
  • при небольшой концентрации могут образовывать вязкие растворы;
  • меняют физические и механические характеристики под действием минимального количества реагента;
  • при механическом воздействии возможно направленное ориентирование их макромолекул.

Элементоорганические соединения

Элементоорганические ВМС, в состав макромолекул которых входят, кроме атомов неорганических элементов – кремния, титана, алюминия — и органические углеводородные радикалы, созданы искусственным путем, и в природе их нет. Классификация полимеров делит их, в свою очередь, на три группы.

  • Первая группа – это вещества, в которых главная цепь составлена из атомов некоторых элементов, окруженных органическими радикалами.
  • Во вторую группу входят вещества с основной цепью, содержащей чередующиеся атомы углерода и таких элементов, как сера, азот и другие.
  • Третья группа включает вещества с органическими главными цепями, окруженными различными элементоорганическими группами.

Примером могут служить кремнийорганические соединения, в частности силикон, обладающий высокой износоустойчивостью.

Неорганические высокомолекулярные соединения в главной цепочке содержат оксиды кремния и металлов – магния, алюминия или кальция. У них нет боковых органических атомных групп. Связи в главных цепочках ковалентные и ионно-ковалентные, что обусловливает их высокую прочность и термостойкость. К ним относятся асбест, керамика, силикатные стекла, кварц.

Карбоцепные и гетероцепные ВМС

Классификация полимеров по химическому составу основной полимерной цепи предполагает деление этих веществ на две большие группы.

  • Карбоцепные, у которых основная цепочка макромолекулы ВМС состоит лишь из атомов углерода.
  • Гетероцепные, в которых в главной цепочке находятся вместе с атомами углерода другие атомы, придающие данному веществу дополнительные свойства.

Каждая из этих больших групп состоит из следующих подгрупп, отличающихся строением цепочки, количеством заместителей, их составом, числом боковых ветвей:

  • соединения с насыщенными связями в цепях, примером которых могут служить полиэтилен или полипропилен;
  • полимеры с ненасыщенными связями в главной цепи, например полибутадиен;
  • галогензамещенные высокомолекулярные соединения – тефлон;
  • полимерные спирты, примером чего является поливиниловый спирт;
  • ВМС, полученные на основе производных спиртов, пример — поливинилацетат;
  • соединения, полученные на основе альдегидов и кетонов, такие как полиакролеин;

  • полимеры, полученные на основе карбоновых кислот, представителем которых является полиакриловая кислота;
  • вещества, полученные из нитрилов (ПАН);
  • высокомолекулярные вещества, полученные из ароматических углеводородов, например полистирол.

Деление по природе гетероатома

Классификация полимеров может зависеть и от природы гетероатомов, она включает несколько групп:

  • с атомами кислорода в главной цепи – простые и сложные полиэфиры и перекиси;
  • соединения с содержанием в основной цепочке атомов азота – полиамины и полиамиды;
  • вещества с атомами кислорода и также азота в главной цепи, примером которых стали полиуретаны;
  • ВМС с атомами серы в основной цепочке – политиоэфиры и политетрасульфиды;
  • соединения, у которых присутствуют в главной цепи атомы фосфора.

Природные полимеры

В настоящее время принята также классификация полимеров по происхождению, по химической природе, которая делит их следующим образом:

  • Природные, их называют еще биополимерами.
  • Искусственные вещества, являющиеся высокомолекулярными.
  • Синтетические соединения.

Природные ВМС составляют основу жизни на Земле. Важнейшими из них являются белки – «кирпичики» живых организмов, мономерами которых выступают аминокислоты. Белки участвуют во всех биохимических реакциях организма, без них невозможна работа иммунной системы, процессы свертывания крови, образование костной и мышечной ткани, работа по преобразованию энергии и многое другое. Без нуклеиновых кислот невозможны хранение и передача наследственной информации.

Полисахариды – это высокомолекулярные углеводороды, которые вместе с белками участвуют в обмене веществ. Классификация полимеров по происхождению позволяет выделить природные высокомолекулярные вещества в особую группу.

Читайте также:  Рисунки для плазменной резки металла

Искусственные и синтетические полимеры

Искусственные полимеры получают из природных различными способами химической модификации для придания им необходимых свойств. Примером может служить целлюлоза, из которой получают многие пластмассы. Классификация полимеров по происхождению характеризует их как искусственные вещества. Синтетические ВМС получают химическим путем с помощью реакций полимеризации или поликонденсации. Их свойства, а следовательно и область применения, зависят от длины макромолекулы, то есть от молекулярного веса. Чем он больше, тем прочнее полученный материал. Очень удобна классификация полимеров по происхождению. Примеры подтверждают это.

Линейные макромолекулы

Любая классификация полимеров достаточно условна, и каждая имеет свои недостатки, так как не может отобразить все характеристики данной группы веществ. Тем не менее она помогает каким-то образом их систематизировать. Классификация полимеров по форме макромолекул представляет их в виде следующих трех групп:

  • линейные;
  • разветвленные;
  • пространственные, которые еще называются сетчатыми.

Длинные, изогнутые или спиралеобразные цепочки линейных ВМС придают веществам некоторые уникальные свойства:

  • за счет появления межмолекулярных связей образуют прочные волокна;
  • они способны к большим и длительным, но в то же время обратимым деформациям;
  • важным свойством является их гибкость;
  • при растворении эти вещества образуют растворы с высокой вязкостью.

Разветвленные макромолекулы

Разветвленные полимеры тоже имеют линейное строение, но со множеством боковых ветвей, более коротких, чем основная. При этом изменяются и их свойства:

  • растворимость у веществ с разветвленной структурой выше, чем у линейных, соответственно, они образуют растворы меньшей вязкости;
  • при увеличении длины боковых цепей становятся слабее межмолекулярные силы, что ведет к увеличению мягкости и эластичности материала;
  • чем выше степень разветвленности, тем больше физические свойства такого вещества приближаются к свойствам обычных низкомолекулярных соединений.

Трехмерные макромолекулы

Сетчатые высокомолекулярные соединения бывают плоскими (лестничного и паркетного типа) и трехмерными. К плоским можно отнести натуральный каучук и графит. В пространственных полимерах имеются поперечные связи-«мостики» между цепями, образующие одну большую трехмерную макромолекулу, обладающую необычайной твердостью.

Примером может служить алмаз или кератин. Сетчатые высокомолекулярные соединения являются основой резин, некоторых видов пластмасс, а также клеев и лаков.

Термопласты и реактопласты

Классификация полимеров по происхождению и по отношению к нагреванию призвана охарактеризовать поведение этих веществ при изменении температуры. В зависимости от процессов, происходящих при нагревании, получаются разные результаты. Если межмолекулярное взаимодействие ослабевает и увеличивается кинетическая энергия молекул, то вещество размягчается, переходя в вязкое состояние. При снижении температуры оно возвращается в обычное состояние – его химическая природа остается неизменной. Такие вещества называют термопластическими полимерами, например полиэтилен.

Другая группа соединений получила название термореактивных. Механизм происходящих в них при нагревании процессов совершенно другой. При наличии двойных связей или функциональных групп они взаимодействуют между собой, меняя химическую природу вещества. Оно не может восстановить свою первоначальную форму при охлаждении. Примером могут служить различные смолы.

Способ полимеризации

Еще одна классификация полимеров – по способу получения. Существуют такие способы получения ВМС:

  • Полимеризация, которая может проходить с использованием ионного механизма реакции и свободнорадикального.
  • Поликонденсация.

Полимеризацией называется процесс образования макромолекул путем последовательного соединения мономерных звеньев. Ими обычно являются низкомолекулярные вещества с кратными связями и циклическими группами. Во время реакции следует разрыв двойной связи или связи в циклической группе, и происходит образование новых между этими мономерами. Если в реакции участвуют мономеры одного вида, она называется гомополимеризацией. При использовании разных видов мономеров происходит реакция сополимеризации.

Реакция полимеризации – это цепная реакция, которая может протекать самопроизвольно, однако для ее ускорения применяются активные вещества. При свободнорадикальном механизме процесс протекает в несколько стадий:

  • Инициирование. На данной стадии путем светового, теплового, химического или какого-либо другого воздействия образуются в системе активные группы – радикалы.
  • Рост длины цепи. Эта стадия характеризуется присоединением следующих мономеров к радикалам с образованием новых радикалов.
  • Обрыв цепи получается при взаимодействии активных групп с образованием неактивных макромолекул.

Невозможно контролировать момент обрыва цепи, и поэтому образующиеся макромолекулы отличаются разной молекулярной массой.

Принцип действия ионного механизма реакции полимеризации такой же, как и свободнорадикального. Но здесь в качестве активных центров выступают катионы и анионы, поэтому различают катионную и анионную полимеризацию. В промышленности радикальной полимеризацией получают важнейшие полимеры: полиэтилен, полистирол и многие другие. Ионная полимеризация применяется при производстве синтетических каучуков.

Поликонденсация

Процесс образования высокомолекулярного соединения с отделением в качестве побочного продукта каких-то низкомолекулярных веществ – поликонденсация, которая отличается от полимеризации еще тем, что элементный состав образующейся макромолекулы не соответствует составу начальных веществ, участвующих в реакции. В них могут участвовать только соединения с функциональными группами, которые, взаимодействуя, отщепляют молекулу простого вещества и образуют новую связь. При поликонденсации бифункциональных соединений образуются линейные полимеры. Когда в реакции участвуют полифункциональные соединения, образуются ВМС с разветвленной или даже пространственной структурой. Образующиеся в процессе реакции низкомолекулярные вещества тоже взаимодействуют с промежуточными продуктами, вызывая обрыв цепи. Поэтому их лучше удалять из зоны реакции.

Читайте также:  Пильная цепь для бензопилы хускварна

Определенные полимеры нельзя получить известными способами полимеризации или поликонденсации, так как нет требуемых исходных мономеров, способных участвовать в них. В этом случае синтез полимера ведется с участием высокомолекулярных соединений, содержащих функциональные группы, которые способны реагировать друг с другом.

С каждым днем усложняется классификация полимеров, так как появляется все больше новых видов этих удивительных веществ с заранее заданными свойствами, и человек уже не мыслит своей жизни без них. Однако возникает другая проблема, не менее важная – возможность их легкой и дешевой утилизации. Решение этой проблемы очень важно для существования планеты.

  • Профили и направляющие
  • Направляющие скольжения
    цепей и ремней из INKULEN PE
  • Направляющие скольжения
    из ZX-100K

Изготовление деталей из полимеров по чертежамХомутовые и кольцевые теплоэлектронагревателиФутеровка

Мы живем в пластиковой эпохе, значение полимеров чрезвычайно велико в нашей жизни. В современно мире его эксплуатация обширна — от обыденных полиэтиленовых пакетов до применения его в аэрокосмической индустрии. Считаются наиболее востребованными такие полимеры, как: полиэтилен, поливинилхлорид, полистирол, АБС пластики и прочее.

Промышленное производство полимеров проходило следующими способами: методом переработки естественной полимерной органики в искусственные вещества и методом добычи синтетических полимеров из молекулярных более низких органических веществ.

Что такое синтетические полимеры?

Человечество издавна использует натуральные полимерные материалы в своем быту; меха, кожу, шелк, шерсть, известь, хлопок, цемент, и глину. Но изготовление цепных полимеров в широких масштабах началось только 20 веке. В 1906 году, ученый Лео Бакеланд открыл смолу, которая ныне носит название “бакелит” — результативный продукт при сгущении фенола и формальдегидного вещества, которое при увеличении температуры переходило в трехмерное состояние. Еще очень долгого, впоследствии, он выпускался для корпусных обшивок телевизоров, электроприборов, розеток и аккумуляторных коробок, а в современном мире его стали использовать как адгезирующее связующее вещество.

Полимеры — это вещества, с неорганической и органической основой, с аморфным и кристаллическим строением, в состав которых входят соединенные мономерные макромолекулярные звенья.

Синтетический полимер — это искусственный полимерный материал, являющийся альтернативой природному сырью. Его получают лабораторным путем двумя методами: полимеризационным и поликонденсационным.

Производство синтетики

Человечество использует разные методы выработки искусственных полимеров:

  1. своеобразное вытягивание их из органических низкомолекулярных соединений;
  2. переработка естественной органики в неестественные материалы.

В качестве изначального продукта для образования синтетических цепей берут различные материалы, являющиеся конечными результатами от переработки газовых элементов, нефтепродуктов и каменного угля (фенолы, ацетилены, бензолы и этилены). Результат в целом зависит от внешности исходных веществ. По их обозначению дается и название полимеру.

Синтетические полимеры образуются методом синтезирующей реакции. Волокна вырабатывают из расплава, а также из раствора по сухому или мокрому методу.

Применение синтетических волокон набирает крупные обороты в отличие от выпуска искусственных волокон. Объясняется это доступностью первичного сырья и обширностью их свойств и полезных качеств. Это позволяет получать продукты с различными свойствами, в то время как возможности модифицировать свойства искусственных волокон крайне малы и даже иногда отсутствуют.

Переработка полимеров

Важным и очень значимым является вопрос экологичности таких изделий. Срок разложения предметов из пластика составляет более ста лет. Именно поэтому так важна переработка полимеров. Производство изделий из вторичного сырья – один из основных и действенных вариантов решения данной проблемы.

Применение синтетических полимеров

Синтетические полимерные материалы используются человечеством в различных областях, из них изготавливают самые разные предметы, оборудования и приспособления.

Одним из первых материалов, изготовление которого было перенесено на промышленные масштабы, является целлулоид. Он использовался при производстве различных видов материалов. Одним из основных толчков в развитии фабрикации синтетических полимерных материалов стало появление автомобильной промышленности.

Раньше при изготовлении машин использовали только натуральные материалы, что сильно осложняло процесс производства. В настоящее время синтетические полимерные материалы используются не только для внутренней облицовки салона автомобиля, но и для выпуска огромного спектра деталей.

Также их активно применяют в радиоэлектронике и строительстве, поэтому многие предприятия и фирмы вкладывают немалые денежные средства в разработку новых технологий и рецептур для создания полимерных материалов.

Их очень часто используют при фабрикации разных радиодеталей и бытовой техники, это неимоверно помогло при создании различных видов приборов, без которых сложно представить жизнь современного общества.

Строительные материалы из полимера обладают многими исключительными свойствами, например, имеют большую прочность при малом весе, высокую пропускаемость светового излучения, низкую теплопроводность и повышенную огнестойкость.

Все виды полимеров, использующиеся в быту, проходят специальные исследования и тесты для того, чтобы максимально снизить отрицательное влияние на организм человека.

Классификация пластмасс

Органические и неорганические.

Органические высокомолекулярные соединения являются основой в жизни растений (полисахариды, белки, пектиновые вещества, крахмал). Торф, бурый уголь, каменные угли — продукты геологического перевоплощения растительных тканей, целлюлозы и лигнина.

Неорганические ВМС играют большую роль в минеральном мире. Основная часть земной коры состоит из окислов кремния, алюминия и других многовалентных элементов, соединенных в макромолекулы.

Читайте также:  Ткацкий станок картинка для детей

По происхождению высокомолекулярные соединения делятся на:

  1. природные, или биополимеры;
  2. синтетические и искусственные.

По отношению к нагреванию (термопластичность).

Термопластичность – свойство тел менять изначальную форму в нагретом состоянии и сохранять её после охлаждения.

Реактопласты – пластмассы, обладающие высокой термоактивностью, перерабатывающиеся при протекании необратимой химической реакции, которая служит причиной образования нерастворимого вещества (процесс носит название “отверждение”). Самые известные и используемые реактопласты делают на основе: полиэфирных, феноло-формальдегидных и эпоксидных смол.

Термопласты – пластмассы, которые после изготовления предмета сохраняют способность к повторной переработке. Самые популярные термопласты изготавливают на основе поливинилхлорида, полиэтилена и полистирола.

Из-за исключительных физических и химических свойств термопластичных синтетических полимеров, а также экономичности этого материала, его чаще других используют в различных сферах деятельности.

Компания OOO предлагает высококачественные изделия из термопластичных полимеров. Материалы изготавливаются под заказ, даже по чертежам заказчика. Доставляются в виде: прутков, листов, труб.

Преимущества инженерных полимеров от “ Пластмасс Групп ”:

  • низкий коэффициент трения;
  • длительный срок службы;
  • экономичность;
  • минимизация рабочих шумов, благодаря поглотительной способности изделий;
  • отсутствие потребности в смазке и постоянном техническом обслуживании;
  • высокая стойкость к большим нагрузкам;
  • экологичность;
  • простота обработки и установки;
  • высокое качество материала;
  • устойчивость к коррозионным средам.

Полимерный синтетический рынок очень велик, и на нем многочисленные производители соревнуются между собой, чтобы донести до потребителя качественный и доступный материал. Приходите или приезжайте в компанию “Торговый Дом Пластмасс Групп”, там с радостью помогут вам выбрать нужный материал или изделие.

Синтетические полимеры – это семейство высокомолекулярных соединений, которые полностью синтезируются в результате прохождения химических реакций полимеризации. Природные и синтетические полимеры отличаются тем, что природные формируются естественным путем (к примеру, кожа, шерсть, шёлк, известь, цемент), а синтетические создаются из исходных веществ-мономеров. В современных условиях применение синтетических полимерных материалов является основой деятельности многих отраслей народного хозяйства и в целом оценивается как катализатор развития человеческой цивилизации.

Примеры и применение синтетических полимеров

Синтетические полимеры можно подразделить на следующие группы:

  • Термопласты (или пластмассы) – вещества, которые размягчаются при нагревании и застывают при охлаждении, не теряя при этом своих исходных свойств. Именно эта группа является наиболее значимой с точки зрения промышленности. К ней относятся такие широко применяемые полимеры, как полиэтилен, поливинилхлорид, полипропилен и другие. Сфера применения – крайне широкая: строительство, машиностроение, медицина, электроника, энергетика и практически любая другая отрасль экономики.
  • Реактопласты (или термореактивные полимеры) – вещества, которые при переработке в готовое изделие проходят необратимую трансформацию, и при повторном нагревании уже не размягчаются или деформируются, а разрушаются. Отличаются высокой твердостью и прочностью. Наиболее распространенные примеры – полиуретан, синтетические каучуки, а также вещества на основе эпоксидной или карбамидной смолы.

Мы рассмотрели базовую классификацию, однако существует целый ряд критериев, по которым можно классифицировать данные вещества. К примеру, можно выделять группы в зависимости от строения молекулярной структуры, молекулярной массы, участвующих в образовании макромолекулы мономерных звеньев и т.п. И по каждой группе можно привести интересные факты о синтетических полимерах, но в рамках данного краткого обзора это сделать мы, увы, не успеем.

Чем искусственные полимеры отличаются от синтетических?

Теперь разберемся, в чем состоит особенность синтетических полимеров. Как мы знаем, их синтезируют в искусственно созданных условиях, на базе мономеров. К примеру, этилен в естественном виде – это бесцветный газ, однако после реакции полимеризации на выходе получаются твёрдые гранулы полиэтилена. Главная особенность как раз и заключается в наличии возможности влиять на процесс полимеризации, а в итоге – и на свойства получаемого полимера:

  • Возможно введение дополнительных мономеров с целью получения сополимеров с улучшенными свойствами.
  • Имеется возможность модифицировать свойства вещества: к примеру, изменить его устойчивость к ударам или низким температурам.
  • Также осуществляется модификация технологических свойств: вязкости и текучести расплава, температуры размягчения и плавления и т.п.
  • Наконец, есть возможность модифицировать визуальные свойства: изменить цвет, сделать материал прозрачным, модифицировать его светопропускающие свойства.

То есть, обобщая, можно говорить о том, что естественные полимерные материалы даются в том виде, в котором их создала природа. Синтетические же человек научился полностью адаптировать под свои нужды и задачи. Поэтому в современных условиях синтетика часто замещает натуральные вещества. К примеру, искусственная полимерная кожа и синтетические волокна активно вытесняют натуральные аналоги, так как отличаются более выгодной ценой и более широким спектром возможных модификаций.

Рассматривая же негативные свойства синтетических полимеров, следует сказать об экологических рисках. Важное преимущество полимеров, их долговечность, оборачивается негативом, если к утилизации отработанных изделий подходят безответственно. Потому ключевым риском популярности синтетических полимеров на планете можно считать существенное загрязнение окружающей среды этими веществами.

Отправить ответ

  Подписаться  
Уведомление о
Adblock
detector