Термопластические и термореактивные полимеры

Термопластами называют все линейные или слегка разветвленные полимеры. Термопластичность – это свойство пластмасс многократно размягчаться при нагревании и затвердевать при охлаждении. При этом физическом процессе, похожем на повторяющиеся плавление и кристаллизацию, химических изменений не происходит.

Реактопласты (термореактивные, или термоотверждающиеся, пластмассы). Если процесс полимеризации протекает более чем в двух направлениях, то возникают молекулы, образующие не линейные цепи, а трехмерную сетку, реактопласты. Эти полимеры можно размягчить нагреванием, но при охлаждении они превращаются в твердые неплавящиеся тела, которые невозможно снова размягчить без химического разложения. Необратимое затвердевание вызывается химической реакцией сшивки цепей.

Важным процессом этого типа является присоединительная полимеризация дивинилбензола:

где R и R’ – арилалкильные радикалы нелинейной полимеризации.

В дивинилбензоле две двойные винильные связи. В ходе полимеризации они образуют трехмерную сетчатую структуру. При нагревании полученный полимер медленно разлагается.

Хорошо известный реактопласт – фенолоформальдегидную смолу – получают поликонденсацией фенола с формальдегидом. Гидроксильная группа повышает активность атомов водорода бензольного кольца в положениях 2, 4 и 6, что позволяет образовывать связи в нескольких направлениях:

2,4,6-Тригидроксиметилфенол, реагируя с фенолом, отщепляет воду и образует трехмерную сетчатую структуру. Начальная стадия выглядит следующим образом:

Из вышесказанного следует простой и логичный вывод: все линейные полимеры термопластичны, а все сшитые сетчатые полимеры реактопластичны (термореактивны). Очевидно, структура мономерных единиц и их функциональных групп позволяет предсказать тип пластмассы, получаемой при полимеризации.

Классификация пластмасс.

В зависимости от вида смол под влиянием на них температуры, пластмассы делятся на два вида: а) термопластичные пластмассы (или термопласты) на основе термопластичных смол; б) термореактивные (реапласты) на основе термореактивных смол.

Термопластичные пластмассы обычно называются по связующему веществу, исходя из наименования мономера с добавлением приставки «поли-»(поливинилхлорид, полиэтилен, полистирол и др.)

Термореактивные — по виду наполнителя (стеклопластики, древесные пластики и др.)

В зависимости от структуры пластмассы можно разделить на две основные группы:

1) пластмассы без наполнителя (не наполненные);

2) пластмассы с наполнителем (наполненные).

Применение пластмасс в качестве материала для строительных конструкций объясняется рядом достоинств этого материала:

— высокой прочностью, составляющей для большинства пластмасс (кроме пенопластов) 50-100 МПа, а для некоторых стеклопластиков прочность достигает 1000 МПа;

— малой прочностью (объемной массой) находящихся в пределах от 20 (для пенопластов) до 2000 кгм3 (для стеклопластиков);

— стойкостью к воздействию химически агрессивных сред;

— биостойкостью (неподверженность гниению);

— простотой формообразования и легкой обрабатываемостью;

— высокими электроизоляционными свойствами и некоторыми другими положительными свойствами.

Вместе с тем пластмассы имеют и недостатки, такие, например, как деформативность , ползучесть и падение прочности при длительных нагрузках, старение (ухудшение эксплуатационных свойств во времени), сгораемость, использование в качестве сырья дефицитных нефтепродуктов.

Влияние недостатков пластмасс можно уменьшить разными путями. Так, уменьшение деформативности добиваются применением рациональных форм поперечного сечения конструкций (трехслойные, трубчатые).

Сгораемость и старение можно уменьшить путем введения специальных добавок.

Основные виды конструкционных пластмасс и области их применения.

К пластмассам, которые находят и будут находить в будущем наибольшее применение в строительных конструкциях относятся стеклопластики, оргстекло , винипласт, полиэтилен, тепло- и звукоизоляционные материалы, древесные пластики.

Дата добавления: 2016-07-29 ; просмотров: 1131 | Нарушение авторских прав

Наука различает два вида полимеров – натуральные и синтетические. Синтетические полимеры получаются путем очистки, модификации, температурной обработки и разбавления натурального полимера. По отношению к нагреву полимеры могут быть термопластичными и термореактивными. Термопластичные полимеры становятся мягкими при нагревании, и вновь затвердевают при снижении температуры.

Полимер – длинная цепочка макромолекул, которые выстроены в одинаковые множественно повторяющиеся звенья. Эти звенья называют мономерами, они соединены в цепочку ковалентными химическими связями.

Полимеры отличаются большим количеством звеньев – от сотен до десятков тысяч. По своей молекулярной структуре полимеры делятся на:

  • линейные;
  • сетчатые;
  • разветвленные;
  • пространственные.

Линейные полимеры могут быть также и термопластичными. Это обусловлено их физическими свойствами по изменению структуры, пластичности при воздействии на них повышенных температур. Линейный полимер считаются более мягким и менее прочным чем разветвленный вид.

Термопластичные полимеры способны при нагревании становиться мягкими, а при охлаждении возвращаться в исходное состояние. Химические связи между молекулами не разрушаются, поэтому при многочисленном нагреве продукт не теряет своих свойств.

Свойства и применение

Термопластичными называют полимеры, которые при нагревании переходят из твердого состояния в мягкое, тягучее, а при охлаждении снова принимают твердую форму. Данные элементы получают реакцией полимеризации. Эта реакция проходит под большим давлением и без применения примесей. Реакция полимеризации стала возможна только благодаря современной химии и специализированной аппаратуре. Получить данный процесс в естественных условиях невозможно.

Свойства термопластичных полимеров вызваны способом соединения мономеров – соединение осуществляется в одном месте, в одном направлении. Другими словами, молекулы соединены между собой в линию при линейном виде, и в виде нескольких линий, сплетенных в паутину, при разветвленной структуре.

При нагревании эти связи слабеют, и полимер размягчается. Такая простота обработки обуславливает широкое применение материалу при производстве формовочных деталей и других сложных изделий.

Термопластичные полимеры хорошо плавятся, а также растворяются в реагентах и растворителях. При испарении растворителя материал твердеет и приобретает прежние свойства. Это качество применяется при производстве различных клеев, лаков, красок, герметиков, замазок и других строительных растворов, имеющих в своем составе полимеры.

Читайте также:  Сталь листовая оцинкованная гост 14918 80

Из термопластичных полимеров выделяют:

  • полиолефины;
  • полиамиды;
  • поливинилхлориды;
  • фторопласты;
  • полиуретаны;
  • поликарбонаты;
  • полиметилметакрилаты;
  • полистирол.

На основании полимеров, исходных веществ и способов обработки выделяют следующие окончательные продуты:

Самое широкое применение термопластичные полимеры получили в строительстве при изготовлении материалов для изоляции, органических стекол, пленок и покрытий различной плотности и толщины, тонких волокон, а также в качестве связующих основ для клеев, штукатурок и теплоизоляционных материалов.

Из полимеров изготавливают бутылки и различные по форме сосуды, тару, трубы, детали машин оргтехники, компьютеров и электронного оборудования. А также используют при производстве напольного покрытия — линолеума, плитки, плинтусов, отделочных декоративных пленок, настенных панелей и пластика.

Полиэтилен

Полиэтилен представляет собой прозрачный материал и считается самым распространенным полимером. Этот материал отличает высокая влагостойкость и газонепроницаемость. Он не пропускает воду, устойчив к кислотам, щелочам, солям и другим агрессивным элементам, хороший диэлектрик. Эластичность полиэтилена сохраняется даже при отрицательной температуре окружающей среды до отметки -70С градусов. Считается очень прочным и стойким материалом. Полиэтилен легко режется ножом, а при взаимодействии с огнем горит и одновременно плавится. К недостаткам также можно отнести слабую адгезию с минеральными соединениями и клеями, подверженность старению при попадании солнечного света и агрессивным факторам окружающей среды. При данных отрицательных фактах полиэтилен не теряет своих основных эксплуатационных свойств.

При изготовлении полиэтилена применяются термопластичные полимеры одного вида, а в результате различных обработок, получают совершенно различные по характеристикам типы полиэтилена. В зависимости от видов полимеризации различают три вида полиэтилена:

  1. Полиэтилен низкой плотности, получаемый при использовании высокого давления. Структура данного полимера имеет разветвленный вид, что обуславливает ее невысокую плотность и прочность, представляет собой мягкий и эластичный материал. Полиэтилен низкой плотности используется для изготовления пакетов для хранения пищевых продуктов, отходов и одежды, других упаковочных материалов. Из него изготавливают небьющеюся химическую посуду для лабораторий.
  2. Полиэтилен, производимый при среднем давлении и плотности. Получается при давлении в 5-40 атмосфер и температуре 130-140С. Также используется для изготовления упаковочных материалов большей плотности, не дорогой посуды, различный контейнеров и форм для пищевых и не пищевых продуктов.
  3. Материал, получаемый при низком давлении, и имеющий высокую плотность. Обладает улучшенной механической прочностью по сравнению с двумя другими видами полиэтилена. Изготавливается под давлением 5 атмосфер и при температуре +70С градусов. Из данного вида полиэтилена изготавливают пакеты, игрушки для детей, посуду, а также формы для воды и сыпучих продуктов, миски, тазики и прочую хозяйскую утварь. Также изготавливают водопроводные трубы, медицинские шприцы, детали механизмов, шланги, фитинги поливочных систем. С применением литья изготавливают вентили, краны, задвижки, зубчатые колеса, шестерни.

Полистирол

Полистирол – пример самого распространенного термопластичного полимера. На вид он бесцветный, прозрачный и твердый. Полистирол является более прочным и жестким материалом, имеет большую рабочую температуру использования и меньшую склонность к старению по сравнению с полиэтиленом. Считается хорошим электрическим изолятором и обладает высокой водоотталкивающей способностью. Очень стоек к щелочным и кислотным средам, не подвержен плесени и грибкам.

Полистирол хорошо растворяется в углеводородах, сложных эфирах. Он очень хрупкий и хорошо горит.

Для увеличения прочности полистирол соединяют с другими полимерами или каучуком. Готовые изделия и заготовки из полистирола легко поддаются обработке. Детали изготавливаются при помощи литья жидкого компонента либо способом выдавливания под давлением.

Из полистирола изготавливают лабораторную химическую посуду, трубки, нити, пленки и ленты. Широко используется материал в электротехнике при производстве изоляторов и, в первую очередь, защитной оболочки на электрические провода. Для промышленной дальнейшей обработки материал первоначально выпускается в листах и в виде крошки, которые в дальнейшем могут служить сырьем для конечных деталей и механизмов.

Полистирол популярен в процессе сополимеризации, когда смешивают два и более полимера. Получаются материалы, которым придаются дополнительные полезные свойства своих компонентов. Как правило, это прочность, огнестойкость, стойкость к растрескиванию. Жидкий полистирол с растворителем применяется при производстве клеев и клеевых основ. Широко используется в строительстве при производстве пенополистирола. Из данного материала выпускаются теплоизоляционные блоки.

Пенополистирол производят из эмульсионного полистирола методом прессовки.

Пенополистирол используется для теплоизоляции холодильных установок, продуктовых витрин и другого торгового оборудования. Данный материал внешне напоминает застывшую пену. Хорошо выдерживает повышенную влажность, не подвержен гниению, стоек к образованию бактерий и грибков. Может использоваться при температуре до + 70С градусов. Главный недостаток пенополистирола – повышенная горючесть.

Читайте также:  Картинки точечных светильников на потолке

Применяется как термо- и звукоизоляционный материал при производстве бытовок, а также различной бытовой и промышленной техники, в пищевой промышленности – для изоляции камер хранилищ, трюмов плавучих средств и помещений для хранения продуктов питания при отрицательных температурах до -35С градусов. Используется также в производстве упаковочного материала.

Полипропилен

Еще один распространенный термопластичный полимер – полипропилен. В качестве исходного вещества для производства полимера используют – пропилен.

Имеет твердую, прочную структуру, устойчив к механическим воздействиям и к коррозийным процессам. Непрозрачный, как правило, белого цвета, не растворим в органических растворителях. Температура плавления +175С, а при 140 градусов продукт становится мягким на ощупь.

Полипропилен хорошо выдерживает механические нагрузки, не теряя при этом своих свойств. Необходимо отметить чувствительность материала к воздействию света — под действием солнечных лучей и воздуха полипропилен разлагается, теряет блеск, что приводит к ухудшению его механических и физических свойств.

Существует много сортов полипропилена, которые получаются при добавлении специальных присадок, добавок и каучуков. Он легко поддается механической обработке, удобен в уходе, этим обусловлено широкое использование пропилена в любой отрасли промышленного производства. Один из главных недостатков –слабая устойчивость к низким температурам. При температуре ниже -5С элемент становится хрупким. Таким образом, пригоден для использования внутри отапливаемых и закрытых помещений.

Формулы термопластичных полимеров

Применяется для производства пленок, упаковок, контейнеров для сыпучих продуктов и круп, одноразовой посуды. Из этого материала изготавливают трубы и фитинги, игрушки и канцелярию. При изготовлении изделий из полипропилена используются все известные способы обработки полимеров.

Другие распространенные термопластичные полимеры

Также можно выделить еще целый ряд полимеров, которые хорошо зарекомендовали себя в строительстве, робототехнике и производстве бытовых приборов, деталей и компонентов для них.

Поливинилхлорид широко применяется при производстве пластмасс, используемых в конечных изделиях в строительстве: линолеум и декоративная плитка, водопроводные трубы, плинтуса, запасные части, шестеренки, и других подвижные детали бытовых приборов и техники.

Поликарбонат – новый вид полимера, который нашел широкое применение при производстве электрических розеток и вилок напряжением 220 и 380 Вольт, а также корпусов бытовой техники.

Поливинилацетат – очень часто применяется в строительстве в виде связующих компонентов для лаков, красок, как пластификатор для цементных растворов.

Фторопласт – считается фторсодержащим полимером. Материал широко применяются в электро- и радиотехнике, при производстве водопроводных труб, вентилей и кранов, бытовых и промышленных насосов, медицинских инструментов и техники, в криогенных емкостях для нанесения на поверхность.

Из всего сказанного можно сделать вывод, что повседневно нас окружают изделия, техника, посуда и приборы, которые изготовлены или содержат в своей основе термопластичные полимеры. Такую популярность им придают эксплуатационные свойства, такие как твердость, стойкость к кислотам и щелочам, долговечность, универсальность и легкость в обработке, малый вес и большой диапазон рабочих температур.

Нейтральный цвет всех полимеров позволяет с легкостью окрашивать заготовки и конечный продукт в любую желаемую палитру. Это дает возможность подбирать готовые изделия из пластмасс под цвет комнаты и интерьера любой формы и сложности исполнения.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Любой полимер (или пластмасс) можно классифицировать на 2 группы – реактопластичные (реактопласты) и термопластичные (термопласты) полимеры.

Отличие заключается в том, как тот или иной полимер ведет себя при нагревании. Термопласты под воздействием высоких температур обладают способностью многократно переходить в вязкотекучее (пластичное) состояние и вновь отверждаться при понижении температуры. Реактопласты же под воздействием высоких температур приобретают сшитую структуру макромолекул, это необратимый процесс. При последующем нагреве реактопластичные полимеры разрушаются, не переходя в пластичное состояние.

Как следствие, способы и технологии переработки реактопластичных и термопластичных полимеров сильно отличаются. Так термопласты перерабатывают преимущественно литьем под давлением, центробежным литьем, экструзией, выдуванием, вакуумным и пневматическим формованием, штамповкой. В то время как к реактопластам применимы технологии прямого (компрессионного) прессования, литьевого и штранг-прессования.

Разберемся более подробно в терминологии, классификации и примерах.

Термопласты

Термопластами (также называемые термопластичными полимерами термопластиками, термопласт-полимерами, пластмассами, thermoplast, thermoplastic), говоря научным языком, называют полимеры, способные многократно преобразовываться при нагреве в высокоэластичное либо вязкотекучее состояние и в этой фазе перерабатываются в конечные изделия. По завершению изготовления изделия они обладают возможностью повторной переработки, что особенно важно при утилизации полимерных отходов.

К термопластам относят полиэтилен, полиметилметакрилат, полипропилен, полиэтилентерефталат, поливинилхлорид, поликарбонат, политетрафторэтилен, политрифторхлорэтилен, полиизобутилен, полистирол, полиамид, полиимид и другие полимеры.

Такие свойства обусловлены структурой макромолекул и их взаимодействием. Так термопластам свойственны линейные и разветвленные структуры макромолекул, а также отсутствие 3-хмерных сшитых структур. При этом группы макромолекул могут образовывать как аморфные, так и аморфно-кристаллические структуры. Макромолекулы связанны друг с другом, как правило, только физически, и энергия обрыва таких связей невысока, гораздо ниже энергии обрыва связей на химическом уровне в макромолекуле. Именно этим и обусловлен переход термопластов в пластичное состояние без деструкции макромолекул.

Читайте также:  Устройство для переработки веток в опилки

Однако существуют некоторые полимеры с линейной структурой макромолекул, но термопластичными не являются, так как температура их деструкции ниже температуры текучести. Ярким примером служит целлюлоза.

Чаще всего термопласты нерастворимы в воде (малогигроскопичны), являются горючими, устойчивыми к щелочным и кислотным средам, являются диэлектриками. Термопластичные полимеры классифицируют на неполярные и полярные по тому, как они себя ведут при наложении электрических полей.

Термопласты бывают наполненными или однородными. Однородные термопласты также именуют смолами, которые, в свою очередь, подразделяют на природные и синтетические. Наполнители же значительно изменяют эксплуатационные и технологические свойства термопластов. Широкое применение получили стеклопластики (полимеры, наполненные стекловолокном), углепластики (полимеры, наполненные углеволокном), а также специальные пластики (полимеры, наполненные разнообразными добавками – антипиренами, электропроводящими и антифрикционными добавками, антистатиками, износостойкими добавками и т.д.).

Реактопласты

Реактопластами (также называемые, реактопластиками, термореактивными пластмассами, реактопластичными полимерами, дуропластами, реактопласт-полимерами, thermoset), говоря научным языком, называют полимерные материалы, которые при формовании в конечные изделия проходят необратимую химическую реакцию с образованием сшитой структурной сетки макромолекул (отверждение), в результате которой образуется неплавкий и нерастворимый полимер. По завершению отверждения изделия более не имеют возможности вторичной переработки, а при нагреве материал не становится пластичным, а лишь деструктирует или возгорается.

По виду применяемых основ реактопластичные полимеры делят на фенопласты (основа — фенолформальдегидные смолы), имидопласты (основа – олигоимиды), эпоксипласты (основа — эпоксидные смолы), эфиропласты (основа — акриловые олигомеры), аминопласты (основа — мочевино- и меламино-формальдегидные смолы) и др.

Часто реактопластмассы в изделиях являются не чистыми полимерами (т.к. высоки усадочные процессы), а наполненными (композитными). Так обычно они содержат такие наполнители как стекловолокно и другие волокнистые наполнители, сажу, мел, целлюлозу, древесную муку, кварцевый песок и др.

Термореактивные материалы за счет сшитой трехмерной структуры, как правило, обладают более высокими показателями твёрдости, хрупкости и упругости, более низким коэффициентом теплового расширения, чем термопластичные материалы, имеют стойкость к органическим растворителям и слабым кислотным и щелочным средам. В отличие от термопластов, чаще всего, могут эксплуатироваться при более высоких температурах. Однако процессы переработки несколько более сложны и требуют соблюдения временных промежутков и температур, за пределами которых могут произойти необратимые реакции и, как следствие, получение брака изделий.

ППУ – термопласт или реактопласт?

Ответ на вопрос не так прост, как может показаться. Строго говоря, двухкомпонентный полиуретан является реактопластом, поскольку полиэфирный компонент отверждается изоцианатным компонентом (реже используются иные отвердители) с образованием сшитых макромолекулярных структур (реакция полиприсоединения). Тоже самое справедливо и для газонаполненных полиуретанов (пенополиуретанов или, проще говоря, ППУ), отверждаемых изоцианатным компонентом, с той лишь разницей, что в полимерную структуру заключены пузырьки газа. В зависимости от функциональности компонентов, степени сшивки и средней длины макромолекул мы можем получать эластичные, интегральные или жесткие ППУ. Такой реактопластичный ППУ при повышенных температурах обугливается и деструктирует, минуя высокоэластичное состояние.

Однако еще в далеких 60-х годах минувшего столетия американские исследователи впервые получили термопластичный полиуретан. Позднее удалось сделать его и газонаполненным, т.е. получить термопластичный пенополиуретан. Основным сырьевым компонентом служат простые и сложные полиэфиры, полиэфиры угольной кислоты, алифатический изоцианат. Как правило, термопластичные полиуретаны (ТПУ) являются однокомпонентными. В зависимости от используемого компонента меняются и свойства конечных продуктов.

ТПУ сочетает в себе прочностные свойства жестких пластиков и высокоэластичные свойства каучуков в широком диапазоне температур. При малой массе, ТПУ выдерживает высокие физическо-механические нагрузки и противостоит разнообразным видам воздействий – истиранию, отрицательным температурам, жирам, маслам и растворителям. Не подвержен воздействию микроорганизмов. Имеет способность шумо- и виброгашения, окрашивается в различные цвета.

Благодаря удачному сочетанию свойств и возможности эти свойства варьировать в широком диапазоне, термопластичный полиуретан стал хорошим заменителем ряда пластиков, резин и даже металлов, и сегодня широко используется во многих промышленных отраслях. Так данный полимер используется для производства подошв обуви, изоляция силовых кабелей, шлангов высокого давления, шин, уплотнителей, футеровочных пленок и листов, амортизационных опор, декоративных элементов в автомобилестроении, роликов на скейтбордах и т.д.

ТПУ перерабатываются литьем под давлением и экструзией.

Дополнительно по данной теме смотрите:

Отправить ответ

  Подписаться  
Уведомление о
Adblock
detector