Тиристор для чего служит

Читайте также:

  1. I. Назначение сроков и вызов к разбору
  2. Автоматический выключатель АВ- 8. Назначение, расположение на вагоне. Работа схем вагона при сработке АВ- 8.
  3. Аккредитованные профессиональные аудиторские объединения. Их назначение и функции.
  4. Аналого-цифровые преобразователи, назначение, структура, принцип действия.
  5. Аудиторская выборка. Сущность и назначение. Применение выборки в процессе аудиторской проверки.
  6. Аудиторский контроль, его сущность и назначение
  7. Базы данных. Назначение и основные функции.
  8. Безбалочные перекрытия, их функциональное назначение.
  9. Бизнес-план предприятия, его назначение.
  10. Брендинг: понятие, сущность, назначение
  11. Буквенные обозначения параметров тиристоров
  12. Бюджетирование на предприятиях туризма: назначение, методы обоснования бюджетов по направлениям.

Тиристор. Устройство, назначение.

Тиристором называется управляемый трехэлектродный полупроводниковый прибор с тремя p–n-переходами, обладающий двумя устойчивыми состояниями электрического равновесия: закрытым и открытым.

Тиристор совмещает в себе функции выпрямителя, выключателя и усилителя. Часто он используется как регулятор, главным образом, когда схема питается переменным напряжением. Нижеследующие пункты раскрывают три основных свойства тиристора:

1тиристор, как и диод, проводит ток в одном направлении, проявляя себя как выпрямитель;

2тиристор переводится из выключенного состояния во включенное при подаче сигнала на управляющий электрод и, следовательно, как выключатель имеет два устойчивых состояния.

3управляющий ток, необходимый для перевода тиристора из «закрытого» состояния в «открытое», значительно меньше (несколько миллиампер) при рабочем токе в несколько ампер и даже в несколько десятков ампер. Следовательно, тиристор обладает свойствами усилителя тока;

Устройство и основные виды тиристоров

Рис. 1. Схемы тиристора: a) Основная четырёхслойная p-n-p-n-структура b) Диодный тиристор с) Триодный тиристор.

Основная схема тиристорной структуры показана на рис. 1. Она представляет собой четырёхслойный полупроводник структуры p-n-p-n, содержащий три последовательно соединённых p-n-перехода J1, J2, J3. Контакт к внешнему p-слою называется анодом, к внешнему n-слою — катодом. В общем случае p-n-p-n-прибор может иметь до двух управляющих электродов (баз), присоединённых к внутренним слоям. Подачей сигнала на управляющий электрод производится управление тиристором (изменение его состояния). Прибор без управляющих электродов называется диодным тиристором или динистором. Такие приборы управляются напряжением, приложенным между основными электродами. Прибор с одним управляющим электродом называют триодным тиристором или тринистором [1] (иногда просто тиристором, хотя это не совсем правильно). В зависимости от того, к какому слою полупроводника подключён управляющий электрод, тринисторы бывают управляемыми по аноду и по катоду. Наиболее распространены последние.

Описанные выше приборы бывают двух разновидностей: пропускающие ток в одном направлении (от анода к катоду) и пропускающие ток в обоих направлениях. В последнем случае соответствующие приборы называются симметричными (так как ихВАХ симметрична) и обычно имеют пятислойную структуру полупроводника. Симметричный тринистор называется такжесимистором или триаком (от англ. triac). Следует заметить, что вместо симметричных динисторов, часто применяются их интегральные аналоги, обладающие лучшими параметрами.

Тиристоры, имеющие управляющий электрод, делятся на запираемые и незапираемые. Незапираемые тиристоры, как следует из названия, не могут быть переведены в закрытое состояние с помощью сигнала, подаваемого на управляющий электрод. Такие тиристоры закрываются, когда протекающий через них ток становится меньше тока удержания. На практике это обычно происходит в конце полуволны сетевого напряжения.

Вольтамперная характеристика тиристора

Рис. 2. Вольтамперная характеристика тиристора

Типичная ВАХ тиристора, проводящего в одном направлении (с управляющими электродами или без них), приведена на рис 2. Она имеет несколько участков:

· Между точками 0 и (Vвo,IL) находится участок, соответствующий высокому сопротивлению прибора — прямое запирание (нижняя ветвь).

· В точке Vво происходит включение тиристора (точка переключения динистора во включённое состояние).

· Между точками (Vво, IL) и (Vн,Iн) находится участок с отрицательным дифференциальным сопротивлением-неустойчивая область переключения во включённое состояние. При подаче разности потенциалов между анодом и катодом тиристора прямой полярности больше Vно происходит отпирание тиристора (динисторный эффект).

· Участок от точки с координатами (Vн,Iн) и выше соответствует открытому состоянию (прямой проводимости)

· На графике показаны ВАХ с разными токами управления (токами на управляющем электроде тиристора) IG (IG=0; IG>0; IG>>0), причём чем больше ток IG, тем при меньшем напряжении Vbo происходит переключение тиристора в проводящее состояние

· Пунктиром обозначен т. н. «ток включения спрямления» (IG>>0), при котором тиристор переходит в проводящее состояние при минимальном напряжении анод-катод. Для того, чтобы перевести тиристор обратно в непроводящее состояние необходимо снизить ток в цепи анод-катод ниже тока включения спрямления.

· Участок между 0 и Vbr описывает режим обратного запирания прибора.

· Участок далее Vbr — режим обратного пробоя.

Вольтамперная характеристика симметричных тиристоров отличается от приведённой на рис. 2 тем, что кривая в третьей четверти графика повторяет участки 0—3 симметрично относительно начала координат.

По типу нелинейности ВАХ тиристор относят к S-приборам.

Дата добавления: 2015-05-06 ; Просмотров: 5004 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

В схемах и технической документации часто используются различные термины и знаки, но не все начинающие электрики знают их значение. Предлагаем обсудить, что такое силовые тиристоры для сварки, их принцип работы, характеристики и маркировка этих приборов.

Что такое тиристор и их виды

Многие видели тиристоры в гирлянде «Бегущий огонь», это самый простой пример описываемого устройства и как оно работает. Кремниевый выпрямитель или тиристор очень похож на транзистор. Это многослойное полупроводниковое устройство, основным материалом которого является кремний, чаще всего в пластиковом корпусе. Из-за того, что его принцип работы очень схож с ректификационным диодом (выпрямительные приборы переменного тока или динисторы), на схемах обозначение часто такое же – это считается аналог выпрямителя.

Читайте также:  Станок для проточки барабанов грузовиков

Фото – Cхема гирлянды бегущий огонь

Бывают:

  • ABB запираемые тиристоры (GTO),
  • стандартные SEMIKRON,
  • мощные лавинные типа ТЛ-171,
  • оптронные (скажем, ТО 142-12,5-600 или модуль МТОТО 80),
  • симметричные ТС-106-10,
  • низкочастотные МТТ,
  • симистор BTA 16-600B или ВТ для стиральных машин,
  • частотные ТБЧ,
  • зарубежные TPS 08,
  • TYN 208.

Но в это же время для высоковольтных аппаратов (печей, станков, прочей автоматики производства) используют транзисторы типа IGBT или IGCT.

Фото – Тиристор

Но, в отличие от диода, который является двухслойным (PN) трехслойного транзистора (PNP, NPN), тиристор состоит из четырех слоев (PNPN) и этот полупроводниковый прибор содержит три p-n перехода. В таком случае, диодные выпрямители становятся менее эффективными. Это хорошо демонстрирует схема управления тиристорами, а также любой справочник электриков (например, в библиотеке можно бесплатно почитать книгу автора Замятин).

Тиристор – это однонаправленный преобразователь переменного тока, то есть он проводит ток только в одном направлении, но в отличие от диода, устройство может быть сделано для работы в качестве коммутатора разомкнутой цепи или в виде ректификационного диода постоянного электротока. Другими словами, полупроводниковые тиристоры могут работать только в режиме коммутации и не могут быть использованы как приборы амплификации. Ключ на тиристоре не способен сам перейти в закрытое положение.

Кремниевый управляемый выпрямитель является одним из нескольких силовых полупроводниковых приборов вместе с симисторами, диодами переменного тока и однопереходными транзисторами, которые могут очень быстро переключаться из одного режима в другой. Такой тиристор называется быстродействующим. Конечно, большую роль здесь играет класс прибора.

Применение тиристора

Назначение тиристоров может быть самое различное, например, очень популярен самодельный сварочный инвертор на тиристорах, зарядное устройство для автомобиля (тиристор в блоке питания) и даже генератор. Из-за того, что сам по себе прибор может пропускать как низкочастотные, так и высокочастотные нагрузки, его также можно использовать для трансформатора для сварочных аппаратов (на их мосте используются именно такие детали). Для контроля работы детали в таком случае необходим регулятор напряжения на тиристоре.

Фото – применение Тиристора вместо ЛАТРа

Не стоит забывать и про тиристор зажигания для мотоциклов.

Описание конструкции и принцип действия

Тиристор состоит из трех частей: «Анод», «Катод» и «Вход», состоящий из трех p-n переходов, которые могут переключаться из положений «ВКЛ» и «ВЫКЛ» на очень высокой скорости. Но при этом, он также может быть переключен с позиции «ВКЛ» с различной продолжительности по времени, т. е. в течение нескольких полупериодов, чтобы доставить определенное количество энергии к нагрузке. Работа тиристора можно лучше объяснить, если предположить, что он будет состоять из двух транзисторов, связанных друг с другом, как пара комплементарных регенеративных переключателей.

Самые простые микросхемы демонстрируют два транзистора, которые совмещены таким образом, что ток коллектора после команды «Пуск» поступает на NPN транзистора TR 2 каналы непосредственно в PNP-транзистора TR 1. В это время ток с TR 1 поступает в каналы в основания TR 2 . Эти два взаимосвязанных транзистора располагаются так, что база-эмиттер получает ток от коллектора-эмиттера другого транзистора. Для этого нужно параллельное размещение.

Фото – Тиристор КУ221ИМ

Несмотря на все меры безопасности, тиристор может непроизвольно переходить из одного положения в другое. Это происходит из-за резкого скачка тока, перепада температур и прочих разных факторов. Поэтому перед тем, как купить тиристор КУ202Н, Т122 25, Т 160, Т 10 10, его нужно не только проверить тестером (прозвонить), но и ознакомиться с параметрами работы.

Типичные тиристорные ВАХ

Для начала обсуждения этой сложной темы, просмотрите схему ВАХ-характеристик тиристора:

Фото – характеристика тиристора ВАХ

  1. Отрезок между 0 и (Vвo,IL) полностью соответствует прямому запиранию устройства;
  2. В участке Vво осуществляется положение «ВКЛ» тиристора;
  3. Отрезок между зонами (Vво, IL) и (Vн,Iн) – это переходное положение во включенном состоянии тиристора. Именно в этом участке происходит так называемый динисторный эффект;
  4. В свою очередь точки (Vн,Iн) показывают на графике прямое открытие прибора;
  5. Точки 0 и Vbr – это участок с запиранием тиристора;
  6. После этого следует отрезок Vbr — он обозначает режим обратного пробоя.

Естественно, современные высокочастотные радиодетали в схеме могут влиять на вольт-амперные характеристики в незначительной форме (охладители, резисторы, реле). Также симметричные фототиристоры, стабилитроны SMD, оптотиристоры, триодные, оптронные, оптоэлектронные и прочие модули могут иметь другие ВАХ.

Фото – ВАХ тиристора

Кроме того, обращаем Ваше внимание, что в таком случае защита устройств осуществляется на входе нагрузки.

Проверка тиристора

Перед тем, как купить прибор, нужно знать, как проверить тиристор мультиметром. Подключить измерительный прибор можно только к так называемому тестеру. Схема, по которой можно собрать такое устройство, представлена ниже:

Фото – тестер тиристоров

Согласно описанию, к аноду необходимо подвести напряжение положительного характера, а к катоду – отрицательного. Очень важно использовать величину, которая соответствует разрешению тиристора. На чертеже показаны резисторы с номинальным напряжением от 9 до 12 вольт, это значит, что напряжение тестера немного больше, чем тиристора. После того, как Вы собрали прибор, можно начинать проверять выпрямитель. Нужно нажать на кнопку, которая подает импульсные сигналы для включения.

Читайте также:  Рейтинг лучших встраиваемых варочных панелей электрических

Проверка тиристора осуществляется очень просто, на управляющий электрод кнопкой кратковременно подается сигнал на открытие (положительный относительно катода). После этого если на тиристоре загорелись бегущие огни, то устройство считается нерабочим, но мощные приборы не всегда сразу реагируют после поступления нагрузки.

Фото – схема тестера для тиристоров

Помимо проверки прибора, также рекомендуется использовать специальные контроллеры или блок управления тиристорами и симисторами ОВЕН БУСТ или прочие марки, он работает примерно также, как и регулятор мощности на тиристоре. Главным отличием является более широкий спектр напряжений.

Видео: принцип работы тиристора

Технические характеристики

Рассмотрим технические параметры тиристора серии КУ 202е. В этой серии представляются отечественные маломощные устройства, основное применение которых ограничивается бытовыми приборами: его используют для работы электропечей, обогревателей и т.д.

На чертеже ниже представлена цоколевка и основные детали тиристора.

Фото – ку 202

  1. Установленное обратное напряжение в открытом состоянии (макс) 100 В
  2. Напряжение в закрытом положении 100 В
  3. Импульс в открытом положении – 30 А
  4. Повторяющийся импульс в открытом положении 10 А
  5. Среднее напряжение =0,2 В
  6. Установленный ток в открытом положении Фото – тиристор ку202н

Цена тиристора зависит от его марки и характеристик. Мы рекомендуем покупать отечественные приборы – они более долговечны и отличаются доступной стоимостью. На стихийных рынках можно купить качественный мощный преобразователь до сотни рублей.

В этом посте мы попытаемся понять, что такое тиристор, как он работает, его характеристики, режимам работы, применения, преимущества и недостатки.

Тиристор в основном представляет собой двухпозиционный переключатель для управления выходной мощностью электрической цепи путем включения и выключения цепи нагрузки в определенные промежутки времени.

Что такое тиристор

Тиристор представляет собой однонаправленное полупроводниковое твердотельное устройство с четырьмя слоями чередующегося материала P и N-типа. Он состоит из трех электродов: анода, катода и затвора. Анод — это положительный конец, а катод — это отрицательный конец.

Вход контролируют поток тока между анодом и катодом. Он используется в электронных устройствах и оборудовании для контроля электроэнергии или тока. Он действует как выпрямитель и может передавать ток только в одном направлении.

Первый тиристор был выпущен в 1956 году. Самым распространенным типом тиристоров является кремниевый управляемый выпрямитель (SCR).

Как работает тиристор

Тиристор действует как диод. Он состоит из двух слоев полупроводников, а именно p-типа и n-типа, расположенных между собой для образования соединения. Анод соединен с внешним p-слоем, катод с внешним n-слоем и затвором с внутренним p-слоем. Он имеет 3 соединения, а именно J1, J2, J3.

Когда анод имеет положительный потенциал относительно катода, на затвор не подается напряжение. Соединения J1, J3 смещены в прямом направлении, а J2 — в обратном. Так что никакой проводимости здесь не происходит.

Теперь, когда положительный потенциал увеличивается за пределами напряжения пробоя, происходит пробой соединения J2, и он начинает проводить ток. Как только происходит пробой, он продолжает проводить независимо от напряжения на затворе, пока потенциал на аноде не будет удален или ток через устройство не станет меньше, чем ток удержания.

Теперь, когда положительный потенциал приложен к клемме затвора по отношению к катоду, происходит пробой соединения J2. Чтобы быстро включить тиристор, необходимо выбрать соответствующее значение потенциала.

Вход действует как управляющий электрод. Когда небольшое напряжение, известное как импульс затвора, подается на его затвор, устройство переключается в состояние проводимости. Это продолжается до тех пор, пока напряжение на устройстве не изменится или не будет снято.

Ток запуска затвора изменяется обратно пропорционально напряжению затвора, и для его запуска требуется минимальный заряд затвора. Таким образом, переключением тиристоров можно управлять через его импульс затвора.

Двухтранзисторная аналогия тиристора

Ток коллектора от NPN-транзистора подается непосредственно на базу PNP-транзистора, а ток коллектора PNP-транзистора подается на базу NPN-транзистора. Эти соединенные транзисторы полагаются друг на друга для проводимости.

Таким образом, для проведения одного из транзисторов требуется базовый ток. Когда анодный вывод тиристора является отрицательным по отношению к катоду, NP-переход становится смещенным вперед, а PN-переход становится обратным смещением.

Два транзисторных аналога тиристора

Здесь поток обратного тока блокируется до тех пор, пока не будет приложено напряжение пробоя. После пробивного напряжения оно начинает проводить без подачи сигнала затвора. Это одна из отрицательных характеристик тиристоров, так как она запускает проводимость при обратном разрыве напряжения.

Когда анодный вывод сделан положительным по отношению к катоду, внешние переходы смещены в прямом направлении, а центральный переход NP смещен в обратном направлении и блокирует прямой ток. Таким образом, чтобы вызвать его в проводимости, положительный ток прикладывается к базе транзисторов.

Два транзистора соединены в регенеративном контуре, и это заставляет транзистор проводить насыщение. Таким образом, можно сказать, что тиристоры блокируют ток как в направлении источника переменного тока в выключенном состоянии, так и могут включаться путем приложения положительного тока к базе транзистора.

Характеристики Тиристора

Тиристоры могут иметь прямое или обратное смещение. Посмотрим, как это работает в обоих направлениях.

Тиристоры в состоянии смещения вперед

Когда анод становится положительным, PN-соединения на концах смещены вперед, а центральное соединение (NP) становится смещенным назад. Он будет оставаться в заблокированном (ВЫКЛ) режиме (также известном как этап прямой блокировки) до тех пор, пока он не будет вызван импульсом тока затвора или приложенное напряжение не достигнет напряжения прямого отключения.

Запуск по импульсу тока затвора Когда он запускается импульсом тока затвора, он начинает проводить и будет действовать как переключатель замыкания. Тиристоры остаются во включенном состоянии, то есть остаются в заблокированном состоянии. Здесь вход теряет контроль, чтобы выключить устройство.

Читайте также:  Как замерить напряжение с помощью мультиметра

Запуск по напряжению прямого отключения — Когда подается прямое напряжение, ток утечки начинает протекать через блокировку (J2) в среднем соединении тиристоров. Когда напряжение превышает прямое отключение перенапряжения или критического предела, то J2 выходит из строя и достигает состояния ON.

Когда ток затвора (Ig) увеличивается, он уменьшает площадь блокировки и, таким образом, уменьшается прямое отключающее напряжение. Он включится, когда будет поддерживаться минимальный ток, называемый запирающим током.

Когда ток затвора Ig = 0 и ток анода падают ниже определенного значения, называемого удерживающим током, во время состояния ВКЛ, он снова достигает своего состояния прямой блокировки.

Тиристоры в обратном смещенном состоянии

Если анод является отрицательным по отношению к катоду, то есть с приложением обратного напряжения, оба PN-перехода на конце, то есть J1 и J3, становятся смещенными в обратном направлении, и центральное соединение J2 становится смещенным в прямом направлении. Через него протекает только небольшой ток утечки. Это режим блокировки обратного напряжения или выключенное состояние тиристора.

Когда обратное напряжение увеличивается еще больше, то при определенном напряжении происходит лавинный пробой J1 и J2, и он начинает проводить в обратном направлении. Максимальное обратное напряжение, при котором тиристор начинает проводить ток, называется обратным напряжением пробоя.

  • Тиристор блокирует напряжение как в прямом, так и в обратном направлении, и, таким образом, образуется симметричная блокировка.
  • Тиристор включается при приложении положительного тока затвора и выключается, когда напряжение на аноде падает до нуля.
  • Небольшой ток от затвора к катоду может запустить тиристор, изменив его с разомкнутой цепи на короткое замыкание.

Режимы работы тиристора

Тиристор имеет три режима работы:

  • Блокировка вперед
  • Обратная блокировка
  • Прямая проводимость

Блокировка вперед

В этом состоянии или режиме прямая проводимость тока блокируется. Верхний диод и нижний диод смещены в прямом направлении, а соединение в центре — в обратном направлении. Таким образом, тиристор не включается, поскольку затвор не срабатывает, и через него не протекает ток.

Обратная блокировка

В этом режиме соединение анода и катода меняется на обратное, и через него по-прежнему не протекает ток. Тиристоры могут проводить ток только в одном направлении, и он блокирует в обратном направлении, поэтому поток тока блокируется.

Прямая проводимость

При подаче тока на затвор срабатывает тиристор, и он начинает проводить ток. Он остается включенным до тех пор, пока прямой ток не упадет ниже порогового значения, и этого можно достичь, отключив цепь.

Типы тиристоров

Основываясь на возможностях включения и выключения и физической структуре, тиристоры классифицируются как:

  • Тиристоры с силиконовым управлением (SCR)
  • Тиристор отключения эмиттера (ETO)
  • Тиристоры с быстрым переключением (SCR)
  • Светоактивированные кремниевые выпрямители (LASCR)
  • Ворота отключают тиристоры (GTO)
  • Тиристоры с обратной проводимостью (RCT)
  • Тиристоры с управлением FET (FET-CTH)
  • MOS-контролируемый тиристор (MTO)
  • Двунаправленные фазово-управляемые тиристоры (BCT)

Применение тиристора

Тиристор используется в различных применениях, таких как:

  • В основном используется в двигателях с переменной скоростью.
  • Используется для управления электроприводом высокой мощности.
  • Используется в основном в двигателях переменного тока, светильниках, сварочных аппаратах и ​​т. Д.
  • Используется в ограничителе тока короткого замыкания и выключателе.
  • Быстрая скорость переключения и низкая проводимость возможны в тиристоре ETO.
  • Используется в качестве диммеров на телевидении, в кинотеатрах.
  • Используется в фотографии для вспышек.
  • Может использоваться в охранной сигнализации.
  • Используется в регулировании скорости вращения электрического вентилятора.
  • Используется в автомобильных зажиганиях.

Преимущества тиристора

Преимущества тиристора включают в себя:

  • Бюджетный.
  • Может быть защищен с помощью предохранителя.
  • Может обрабатывать большое напряжение / ток.
  • Способен контролировать мощность переменного тока.
  • Очень легко контролировать.
  • Легко включить.
  • Тиристор GTO или Gate Turnoff обладает высокой эффективностью.
  • Занимает меньше времени на работу.
  • Тиристорные выключатели могут работать с большой частотой.
  • Требует меньше места по сравнению с механическими переключателями.
  • Может использоваться для надежных операций.
  • Стоимость обслуживания тиристора очень меньше.
  • Очень прост в использовании для сложного управления.
  • Грузоподъемность очень хорошая.
  • Может использоваться в качестве генератора в цифровых цепях.
  • Может быть подключен параллельно и последовательно для обеспечения электронного управления на высоких уровнях мощности.
  • Тиристоры проводят ток только в одном направлении.
  • Он может использоваться как защитное устройство, как предохранитель в линии электропередачи.

Недостатки тиристора

К недостаткам тиристора можно отнести:

  • Не может использоваться для более высоких частот.
  • В цепи переменного тока тиристор должен быть включен на каждом цикле.
  • SCR требуется время для включения и выключения. Это вызывает задержку или повреждение в нагрузке.
  • Он может остановить двигатель при подключении, но не может удерживать его в неподвижном состоянии.
  • Скорость отклика тиристора очень низкая.
  • Не часто используется в цепях постоянного тока, так как тиристор нельзя отключить, просто сняв привод затвора.
  • Низкая эффективность.
  • Ток фиксации и удержания больше в тиристоре GTO.
  • Возможность обратной блокировки напряжения меньше возможности прямой блокировки.
  • Надежность тиристора TRIAC меньше, чем SCR.
  • TRIAC имеют более низкий рейтинг dv / dt по сравнению с SCR.

Тимеркаев Борис — 68-летний доктор физико-математических наук, профессор из России. Он является заведующим кафедрой общей физики в Казанском национальном исследовательском техническом университете имени А. Н. ТУПОЛЕВА — КАИ

Отправить ответ

  Подписаться  
Уведомление о
Adblock
detector