Тиристорный ключ постоянного тока схема

Регулирование путём размыкания или шунтировки цепи

Эти методы выключения тиристоров в цепи постоянного тока могут быть применены к любому тиристору с регенеративным механизмом включения. Разумеется в качестве выключателя S применимы современные полупроводниковые приборы, достаточно согласовать управляющие импульсы на тиристор и прибор S соответствующим образом. На рисунке а) вполне применим низковольтный силовой быстрый биполярный транзистор с дополнительным форсированным запиранием. На рисунке b) необходим прибор S, имеющий низкое падение напряжения, он шунтирует тиристор имеющий прямое напряжение не более 2.5 вольт, обеспечивая прохождение основного тока через себя на время снижения тока в тиристоре ниже тока удержания и запирания его. Стоит помнить, что на момент отпирания прибора S прикладывается максимальное напряжение.

Принудительная коммутация

Основной (рабочий) тиристор Т2, при его отпирании, начинает течь ток в нагрузку и через диод D и дроссель L на конденсатор С разряжая его, после чего, когда перестал изменяться ток через дроссель конденсатор перезаряжается относительно входного напряжения создавая дополнительный источник напряжения необходимый для создания обратного напряжения для рабочего тиристора. Как недостаток схемы, большие токи через дроссель L, в случае коммутирующего конденсатора ёмкостью 4 мкф амплитуда тока около 20 ампер. Снижать ёмкость конденсатора при применении обычных, не быстрых тиристоров нет смысла, возможно не хватит времени разряда коммутирующего конденсатора через нагрузку для запирания рабочего тиристора, типовое время запирания которого150мкс, причём добавление резисторов в разрядную цепь коммутирующего конденсатора малоэффективно, можно легко превысить внутреннее сопротивление основного источника напряжения и потерять эффект шунтирования.

Для снижения габаритов (уменьшение ёмкости коммутирующего конденсатора) и увеличения диапазона регулирования можно использовать эту схему (с идеей ознакомил drony@mail.ru)

В этом случае тиристор Т1 подключает резонансную цепь LC через необходимое время.

В этой схеме значительно уменьшен ток дросселя, форма выходного напряжения на номинальной нагрузке примерно такая как фон этой странички. Исключив "иглу" вначале импульса, увидим лёгкий завал фронта, по личным впечатлениям это лучший импульс "притягивания", более уловистый. Каких то особенностей схема не имеет, в качестве сердечника дросселя L я применяю витые тороидальные сердечники из электротехнической стали сечением 0.8-1.2 кв.см., число витков 2*100. Этот ключ применён так же в приборе "Аква".

Ключ на запираемом тиристоре

В последнее время появились надёжные запираемые тиристоры. Управление запираемых тиристоров GTO идёт по одному управляющему выводу прибора импульсами разной полярности, положительным на открывание и отрицательным на запирание.

Когда схема подключается к источнику постоянного напряжения, времязадающий конденсатор С1 заряжается. При достижении уровня пробоя динистора Т2 тиристор Т1 открывается и нагрузка оказывается под напряжением. Теперь конденсатор С2 начинает накапливать заряд до уровня пробоя динистора Т3 прикладывая анпряжение на управляющий электрод тиристора Т1 относительно катода, что и выключает тиристор, далее цикл повторяется. типовые значения конденсаторов С1 и С2 примерно 0.5-1 мкф, резистором Rf регулируем частоту следования импульсов, а резистором Rt их длительность. Параметры динисторов выбираются в зависимости от применяемого запираемого тиристора, обычно на открывание амплитуда управляющего импульса запираемого тиристора не превышает нескольких вольт, на запирание 70-80 вольт. Разумеется легко обойтись без динисторов в управлении, используя отдельное двухполярное питание, но есть решения и с однополярным драйвером, формирующим импульсы запирания.

Управление запираемым GTO тиристором от источника однополярного напряжения

Эта схема используется в преобразователе с внешним возбуждением на GTO тиристоре мощностью 1200 вт с частотой 20кГц. При переключении транзистора Т1 из включенного состояния в выключенное и обратно, к управляющему электроду тиристора поступают как положительные (включающие) так и отрицательные (выключающие) импульсы. Амплитуда отрицательного импульса почти вдвое превышает напряжение источника питания этого драйвера. К сожалению, для наших условий (малая длительность и частота повторения импульсов ) КПД этой схемы низок, большую часть времени транзистор Т1 будет открыт рассеивая мощность на резисторе R3. Так же важным параметром для тиристоров GTO является длительность включающего импульса. При некоторых условиях (слабая нагрузка, высокая температура) GTO тиристор может испытывать трудности быстрого защёлкивания в состояние насыщения, если запускается очень короткими импульсами, при более длительных импульсах проблема исчезает. Более выгодным решением будет использование твухтактного выходного каскада на комплементарных парах транзисторов с двухполярным источником питания.

Тиристоры нашли широкое применение в полупроводниковых устройствах и преобразователях. Различные источники питания, частотные преобразователи, регуляторы, возбудительные устройства для синхронных двигателей и много других устройств строились на тиристорах, а в последнее время их вытесняют преобразователи на транзисторах. Основной задачей для тиристора является включение нагрузки в момент подачи управляющего сигнала. В этой статье мы рассмотрим, как управлять тиристорами и симисторами.

Определение

Тиристор (тринистор) — это полупроводниковый полууправляемый ключ. Полууправляемый — значит, что вы можете только включать тиристор, отключается он только при прерывании тока в цепи или если приложить к нему обратное напряжение.

Он, подобно диоду, проводит ток только в одном направлении. То есть для включения в цепь переменного тока для управления двумя полуволнами нужно два тиристора, для каждой по одному, хотя не всегда. Тиристор состоит из 4 областей полупроводника (p-n-p-n).

Другой подобный прибор называется симистор — двунаправленный тиристор. Его основным отличием является то, что ток он может проводить в обе стороны. Фактически он представляет собой два тиристора соединённых параллельно навстречу друг другу.

Читайте также:  Подцветочники из металла фото

Основные характеристики

Как и любых других электронных компонентов у тиристоров есть ряд характеристик:

Падение напряжения при максимальном токе анода (VT или Uос).

Прямое напряжение в закрытом состоянии (VD(RM) или Uзс).

Обратное напряжение (VR(PM) или Uобр).

Прямой ток (IT или Iпр) – это максимальный ток в открытом состоянии.

Максимально допустимый прямой ток (ITSM) — это максимальный пиковый ток в открытом состоянии.

Обратный ток (IR) — ток при определенном обратном напряжении.

Постоянный ток в закрытом состоянии при определенном прямом напряжении (ID или Iзс).

Постоянное отпирающее напряжение управления (VGT или UУ).

Ток управления (IGT).

Максимальный ток управления электрода IGM.

Максимально допустимая рассеиваемая мощность на управляющем электроде (PG или Pу)

Принцип работы

Когда на тиристор подают напряжение он не проводит ток. Есть два способа включит его – подать напряжение между анодом и катодом достаточное для открытия, тогда его работа ничем не будет отличаться от динистора.

Другой способ – это подать кратковременный импульс на управляющий электрод. Ток открытия тиристора лежит в пределах 70-160 мА, хотя на практике эта величина, как и напряжение которое нужно приложить к тиристору зависит от конкретной модели и экземпляра полупроводникового прибора и даже от условий, в которых он работает, таких, например, как температура окружающей среды.

Кроме управляющего тока, есть такой параметр как ток удержания — это минимальный ток анода для удержания тиристора в открытом состоянии.

После открытия тиристора управляющий сигнал можно отключать, тиристор будет открыт до тех пор, пока через него протекает прямой ток и подано напряжение. То есть в цепи переменного тиристор будет открыт в течении той полуволны напряжение которой смещает тиристор в прямом направлении. Когда напряжение устремится к нулю, снизится и ток. Когда ток в цепи упадет ниже величины тока удержания тиристора — он закроется (выключится).

Полярность управляющего напряжения должна совпадать с полярностью напряжения между анодом и катодом, что вы наблюдаете на осциллограммах выше.

Управление симистором аналогично хоть и имеет некоторые особенности. Для управления симистором в цепи переменного тока нужно два импульса управляющего напряжения — на каждую полуволну синусоиды соответственно.

После подачи управляющего импульса в первой полуволне (условно положительной) синусоидального напряжения ток через симистор будет протекать до начала второй полуволны, после чего он закроется, как и обычный тиристор. После этого нужно подать еще один управляющий импульс для открытия симистора на отрицательной полуволне. Это наглядно проиллюстрировано на следующих осциллограммах.

Полярность управляющего напряжения должна соответствовать полярности приложенного напряжения между анодом и катодом. Из-за этого возникают проблемы при управлении симисторами с помощью цифровых логических схем или от выходов микроконтроллера. Но это легко решается путем установки симисторного драйвера, о чем мы поговорим позже.

Распространенные схемы управления тиристорами или симисторами

Самой распространенной схемой является симисторный или тиристорный регулятор.

Здесь тиристор открывается после того как на конденсаторе будет достаточная величина для его открытия. Момент открытия регулируется с помощью потенциометра или переменного резистора. Чем больше его сопротивление — тем медленнее заряжается конденсатор. Резистор R2 ограничивает ток через управляющий электрод.

Эта схема регулирует оба полупериода, то есть вы получаете полную регулировку мощности почти от 0% и почти до 100%. Это удалось достичь, установив регулятор в диодном мосте, таким образом регулируется одна из полуволн.

Упрощенная схема изображена ниже, здесь регулируется лишь половина периода, вторая полуволна проходит без изменения через диод VD1. Принцип работы аналогичен.

Симисторный регулятор без диодного моста позволяет управлять двумя полуволнами.

По принципу действия почти аналогична предыдущим, но построена на симисторе с её помощью регулируются уже обе полуволны. Отличия заключаются в том, что здесь импульс управления подаётся с помощью двунаправленного динистора DB3, после того как конденсатор зарядится до нужного напряжения, обычно это 28-36 Вольт. Скорость зарядки также регулируется переменным резистором или потенциометром. Такая схема реализована в большинстве бытовых диммеров.

Такие схемы регулировки напряжения называется СИФУ — система импульсного фазового управления.

На рисунке выше изображен вариант управления симистором с помощью микроконтроллера, на примере популярной платформы Arduino. Симисторный драйвер состоит из оптосимистора и светодиода. Так как в выходной цепи драйвера установлен оптосимистор на управляющий электрод всегда подаётся напряжение нужной полярности, но здесь есть некоторые нюансы.

Дело в том, что для регулировки напряжения с помощью симистора или тиристора нужно подавать управляющий сигнал в определенный момент времени, так чтобы срез фазы происходил до нужной величины. Если наугад стрелять управляющими импульсами — схема работать конечно будет, но регулировок добиться не выйдет, поэтому нужно определять момент перехода полуволны через ноль.

Так как для нас не имеет значения полярность полуволны в настоящий момент времени — достаточно просто отслеживать момент перехода через ноль. Такой узел в схеме называют детектор нуля или нуль-детектор, а в англоязычных источниках "zero crossing detector circuit" или ZCD. Вариант такой схемы с детектором перехода через ноль на транзисторной оптопаре выглядит следующим образом:

Оптодрайверов для управления симисторами есть множество, типовые – это линейка MOC304x, MOC305x, MOC306X, произведенные компанией Motorola и другими. Более того – эти драйверы обеспечивают гальваническую развязку, что убережет ваш микроконтроллер в случае пробоя полупроводникового ключа, что вполне возможно и вероятно. Также это повысит безопасность работы с цепями управления, полностью разделив цепь на «силовую» и «оперативную».

Читайте также:  Самодельные ручки для ножей своими руками

Заключение

Мы рассказали базовые сведения о тиристорах и симисторах, а также управлении ими в цепях с «переменкой». Стоит отметить, что мы не затрагивали тему запираемых тиристоров, если вас интересует этот вопрос – пишите комментарии и мы рассмотрим их подробнее. Также не были рассмотрены нюансы использования и управления тиристорами в силовых индуктивных цепях. Для управления «постоянкой» лучше использовать транзисторы, поскольку в этом случае вы решаете, когда ключ откроется, а когда он закроется, повинуясь управляющему сигналу…

Тиристоры составляют наиболее широкий класс полупроводниковых приборов с отрицательным сопротивлением и предназначены в основном для коммутации токов и напряжений в сильноточных схемах. Большое число типов тиристоров с разнообразными характеристиками определяют многообразие ключевых и коммутирующих схем на их основе, тем не менее, общее свойство этих приборов — S-образная вольтамперная характеристика — позволяет обобщенно подходить к анализу статических и динамических свойств тиристорных ключей.

Для обеспечения работы ключа в двух устойчивых режимах его нагрузочная прямая должна пересекать вольт-амперную характеристику в трех точках (/, 2, 3) (рис. . )) из которых положения 1 и 3 являются устойчивыми. Если при отсутствии входного сигнала приложенное к тиристору прямое напряжение не превышает UВКЛ, то ключ находится в закрытом состоянии. Однако с приближением напряжения на тиристоре к величине, равной UВКЛ, закрытое состояние оказывается неустойчивым. Более того, некоторые образцы тиристоров могут самопроизвольно отпираться при выдержке под напряжением, значительно меньшем UВКЛ, что проявляется особенно сильно с увеличением, температуры. Поэтому закрытое состояние тиристора характеризуется лишь частью напряжения UВКЛ, т. е. максимально допустимым прямым напряжением UПР.МАКС, находясь под которым прибор должен оставаться закрытым в течение всего срока службы.

Для трехэлектродных тиристоров значение UПР.МАКС можно увеличить, если зашунтировать управляющий переход или подать на него отрицательное смещение, что вызывает протекание в цепи управляющего электрода запирающего тока IУ.ОБР, причем в случае шунтирования управляющего перехода ток IУ.ОБР является частью тока анода, ответвляющейся в цепь шунта.

Сопротивление тиристорного ключа в закрытом состоянии определяется током утечки в прямом направлении IУТ, измеренным при напряжении UПР.МАКС и максимально допустимой температуре, и током IК0 центрального перехода П2. Это позволяет использовать в качестве эквивалентной схемы тиристора в закрытом состоянии сопротивление, величина которого равна RОБР, и источник тока IК0 .

Сопротивление ключа в открытом состоянии определяется остаточным напряжением UОБР, измеренным при протекании максимального прямого тока IПР.МАХ, который задается исходя из максимально допустимой мощности рассеивания на тиристоре РМАХ. Это позволяет заменить открытый тиристор эквивалентным сопротивлением RПР. величина которого равна RПР = UОСТ/ IПР.МАХ и источником напряжения UОСТ.

Переключение тиристора из закрытого состояния в открытое должно осуществляться подачей отпирающего импульса в цепь управления для трехэлектродных приборов — триодных (ТТ) и запираемых (ЗТ) тиристоров или в цепь анод-катод для диодных тиристоров (ДТ). Между амплитудой импульса UВКЛ.ИМП, переключающего ДТ в открытое состояние, которую в соответствии со справочными обозначениями, принятыми для диодных тиристоров, будем обозначать UПУСК, и статическим значением UВКЛ не существует корреляционного соответствия. Амплитуда UПУСК в основном зависит от длительности фронта импульса отпирающего напряжения на аноде тиристора tФ, емкости участка анод-катод закрытого диодного тиристора CДТ CП2 где CП2 — емкость центрального р-n перехода, а следовательно, и от внутреннего сопротивления генератора отпирающих импульсов RВН.

Для отпирания импульсного ключа, выполненного на трехэлектродном приборе (ТТ или ЗТ), и запирания ключа на ЗТ необходимо обеспечить протекание определенного импульса тока в цепи управления тиристора. Амплитуда этого импульса, прежде всего, зависит от его длительности, а при запирании — и от величины прямого тока анода IПР, протекающего через открытый тиристор.

Одним из основных параметров, характеризующих процесс отпирания трехэлектродных тиристоров, является импульсный ток спрямления IСПР, под которым следует понимать минимальную амплитуду положительного импульса тока управления заданной длительности, переключающего тиристор в открытое состояние при определенном напряжении на аноде.

Длительность процесса отпирания характеризуется временем задержки tЗ (ток анода возрастает до 0,1 IПР) и временем установления прямого сопротивления tУСТ (ток анода изменяется от 0, IПР до 0,9 IПР), которые в сумме составляют время включения tВКЛ, а длительность процесса запирания характеризуется временем запаздывания tЗП (ток анода уменьшается до 0,9 IПР) и временем спада tСП (ток анода изменяется от 0,9 IПР до 0,1 IПР), которые в сумме составляют время запирания tЗАП.

Время переключения тиристорного ключа, несмотря на действие сильной внутренней положительной обратной связи составляет существенно большую величину, чем аналогичный параметр у транзисторных ключей. Это объясняется режимом глубокого насыщения p-n-p-n — структуры и связанным с ним накоплением и рассасыванием большого объемного заряда. Из-за этого время включения тиристора составляет единицы микросекунд, а выключения — десятки и сотни микросекунд, уменьшаясь у высокочастотных тиристоров и тиристоров, прямой ток которых существенно меньше максимально допустимого.

Заметим, что при активно-индуктивном характере нагрузки тиристорного ключа нарастание прямого тока определяется не только и не столько инерционностью самого прибора, сколько постоянной времени нагрузки. Для таких ключей длительность управляющих импульсов выбирается не только по минимально заданным справочным данным, но и в зависимости от постоянной времени нагрузки, учитывая, что в течении длительности импульса управления прямой ток должен успеть превысить величину IВЫКЛ.

К числу параметров, характеризующих отпирание тиристорного ключа, следует отнести и максимально допустимую скорость нарастания анодного тока (dIПР/dt)MAX. Ограничение скорости (dIПР/dt) сверху обусловлено влиянием неодномерных явлений на процесс отпирания тиристора и оказывается особенно сильным в режимах, когда амплитуда импульса прямого тока IПР.ИМП >> IПР.МАХ. Значения (dIПР/dt) иIПР.ИМП.МАХ. зависят от длительности импульсов прямого тока и частоты их следования.

Читайте также:  Тестер электрический мультиметр как пользоваться

Построение и расчет цепей отпирания, выключения и запирания тиристорных ключей являются первоочередными задачами, которые приходится решать при проектировании тиристорных устройств. При этом под выключением тиристоров понимается их выключение пo анодной цепи, а под запиранием — выключение по цепи управляющего электрода.

Анализ цепей отпирания. Цепь отпирания должна обеспечить включение от импульса сигнала управления, защиту тиристора от отпирающего импульса помехи и запас по минимально допустимому режиму входной цепи прибора. Эти требования необходимо удовлетворить в заданном диапазоне внешних, например, температурных, воздействий для любого тиристора выбранного типа.

Для обеспечения гарантированного включения тиристора и исключения его срабатывания от сигнала помехи UПОМ необходимо удовлетворить неравенства

(4.7.1)

(4.7.2)

где UПОМ.У и IПОМ.У — допустимые значения напряжения и тока помехи, действующей в управляющей цепи.

В случае индуктивного характера нагрузки (рис. 4.7.1-а) длительность импульса управления необходимо увеличить до значения

Для уменьшения длительности управляющих импульсов индуктивную нагрузку целесообразно шунтировать активным сопротивлением или последовательной RС-цепью (рис. 4.7.1-б и -в), параметры которых для схемы рис. 4.7.1, а выбираются из условия

а для схемы рис. 4.7.1.

;

Применение резистивно-емкостного шунта уменьшает потери мощности по сравнению с чисто резистивным шунтом, однако при

в схеме могут возникнуть колебательные процессы.Основные схемы цепей отпирания ключей на тиристорах показаны на рис. 4.7.2. Включение диода в управляющую цепь тиристора (рис. 4.7.2, —а и —б) исключает протекание обратного тока через управляющий переход, что не допускается для обычных триодных тиристоров, а включение RШ повышает устойчивость тиристоров против самопроизвольного включения В схеме (рис. 4.7.2-б) роль сопротивления шунта играет малое по постоянному току сопротивление выходной обмотки трансформатора. Включение разделительной емкости CР в схеме рис. 4.7.2-в позволяет сформировать управляющий импульс с формой, близкой к оптимальной, т. е. крутым и большим по амплитуде передним фронтом и экспоненциально убывающей вершиной.

Схемы цепей отпирания ключей на диодных тиристорах приведены на рис. 4.7.2 г-е. При подаче короткого импульса положительной (рис 4.7.2-г) или отрицательной (рис. 4.7.2-д) полярности в цепи анод — катод тиристора через емкость центрального перехода CП2 = CS протекает ток, который обеспечивает накопление в базах S заряда QВКЛ, необходимого для отпирания прибора. Диод D1 увеличивает входное сопротивление схемы. Для отпирания S в схеме рис. 4.7.2-д должны выполняться неравенства

и

а в схеме рис. 4.7.2 —г и д — неравенства

и

Анализ цепей выключения.Для выключения тиристора по аноду необходимо уменьшить протекающий через тиристор ток до величины меньшей IВЫКЛ.MIN, на время большее tВЫКЛ. В цепях постоянного тока эта задача решается с помощью транзисторного ключа или коммутирующих реактивных элементов

Схемы выключения тиристорного ключа с последовательным и параллельным транзисторами показаны на рис. 4.7.3 –а и —б. Последовательный

транзистор, запираясь оложительным импульсом, прерывает протекание тока через тиристор на время tИ > tВЫКЛ. Дополнительное подключение Е повышает надежность выключения, компенсируя ток IК0 закрытого транзистора, и способствует повышению скорости рассасывания объемного заряда и, тем самым, уменьшает время выключения тиристора.

В схеме с параллельным транзистором при его отпирании основная часть анодного тока тиристора ответвляется через транзистор, прямой ток тиристора уменьшается ниже IВЫКЛ.MIN и тиристор запирается. Для повышения надежности запирания последовательно с тиристором можно включить диод D, который увеличивает остаточное напряжение и сопротивление шунтируемой транзистором цепи и тем самым уменьшает протекающий в ней при открытом транзисторе ток.

Поскольку в тиристорных ключах с транзисторными схемами выключения рассасывание накопленного в структуре заряда происходит только за счет процессов рекомбинации, то время выключения тиристоров затягивается, а амплитуды коммутируемых токов и напряжений, определяемые характеристиками транзисторов, ограничивают область применения тиристорных ключей. Такие схемы выключения применяются только для маломощных тиристоров.

Более широко в импульсной технике используются схемы выключения с помощью заряженного конденсатора и вспомогательного тиристора. Суть работы этих схем выключения заключается в том, что предварительно заряженный конденсатор с помощью вспомогательного тиристора подключается к основному тиристору таким образом, что ток его разряда направлен навстречу прямому току основного тиристора, что обеспечивает его форсированное запирание. Коммутирующий конденсаторС может быть подключен с помощью вспомогательного тиристора S2 параллельно основному тиристору S1 (рис. 4.7.4 –а-в), параллельно нагрузке (рис. 4.7.5 -г и д) или к соединенным последовательно тиристору S1 и нагрузке (рис. 4.7.4-е). Соответственно различают параллельную (рис. 4.7.4, а-д) и последовательную (рис. 4.7.4 -е) коммутации.

Параметры коммутирующей емкостиС и дросселя L рассчитывают исходя из условия, при котором на основном тиристоре за время перезаряда конденсатора до нуля сохраняется обратное напряжение течение отрезка времени длительностью не меньше tВЫКЛ. Заряд конденсаторов С обеспечивается специальной зарядной цепью, которая на рис. 4.7.4-б-е не показана.

Отправить ответ

  Подписаться  
Уведомление о
Adblock
detector