Трехфазный тиристорный регулятор мощности

Представляю Вашему вниманию трехфазный регулятор мощности на микроконтроллере.

Устройство регулирует мощность в активной нагрузке включенной треугольником, либо звездой , без использования нулевого проводника. Предназначено для использования с печами сопротивлений, водогрейными котлами, трехфазными ТЭНами и даже лампами накаливания, при соблюдении условия симметричной нагрузки в фазах. Два режима работы – регулирование с использованием алгоритма Брезенхема, и фазовый метод регулирования. Устройство задумывалось как максимально простое, и доступное в повторении. Управление от кнопок либо потенциометром, светодиодный индикатор режимов работы (не обязательно), светодиод , показывающий состояние устройства.

Внимание! Присутствуют опасное для жизни напряжение! Для опытных пользователей!

Схема устройства для удобства разделена на функциональные блоки. Это дает возможность вносить дальнейшие изменения и улучшения в конструкцию, без кардинальной переработки всей схемы. Ниже будет описан каждый блок в отдельности.

Силовая схема

Авторский вариант был построен на мощных оптотиристорных модулях МТОТО 80 — 12. Каждый модуль содержит два встречно — параллельных восьмидесятиамперных оптотиристора. Используется три модуля, по одному в каждую фазу. Управляющие импульсы приходят одновременно на оба силовых ключа, но откроется только тот, к которому приложено напряжение в прямой полярности. Модули заменимы на тиристорные или симисторные сборки, либо отдельные тиристоры и симисторы. Модульные сборки удобнее в монтаже, имеют изолированную подложку, и упрощают гальваническую развязку схемы управления. При использовании отдельных тиристоров или симисторов, потребуется ставить дополнительные импульсные трансформаторы, либо оптроны. Так же потребуется подобрать токоограничивающие резисторы оптронов (R32 –R34)под имеющиеся у вас экземпляры. Микроконтроллер формирует управляющие импульсы, которые усиливаются составными транзисторами Т7-Т9. Импульсы модулированы высокой частотой , для уменьшения тока через оптроны , так же это дает возможность использования малогабаритных импульсных трансформаторов (далее ТИ). Питание оптронов либо ТИ осуществляется нестабилизированным напряжением 15в.

Обязательны к установке RC цепи параллельно тиристорам. В моем варианте это резисторы ПЭВ-10 39 Ом и конденсаторы МБМ 0,1мкф 600в. Модули установлены на радиатор, при работе греются. Нагрузка трехфазный нихромовый нагреватель, максимальный ток 60А. За два года эксплуатации отказов не было.

На схеме не показан, но должен быть установлен, автоматический выключатель под рассчитанную нагрузку, так же желательно установить отдельный автоматический выключатель на фазы блока синхронизации. Устройство подключается к сети 3х380 вольт с соблюдением чередования фаз А-В-С, при неправильном чередовании устройство работать не будет. Нулевой провод нужен для подключения трансформатора блока питания, если его первичная обмотка выполнена на 220 вольт. При использовании трансформатора на 380 вольт, нулевой проводник не нужен.

Защитное заземление корпуса устройства выполнять обязательно!

Схема источника питания

В пояснении не нуждается, используется два напряжения – нестабилизированное 15 вольт и стабилизированное 5 вольт, потребление в авторском варианте составляло до 300мА, в большей степени зависит от светодиодного индикатора и используемых силовых элементов. Можно использовать любые доступные детали, особых требований нет.

Схема блока синхронизации

Содержит три одинаковых канала. Каждый канал подключен между двух фаз, т.е. каналы включены треугольником. В момент равенства фазных напряжений (точка пересечения синусоид ) формируется импульс, используемый для синхронизации в МК. Детали не критичны, но нужно придерживаться номиналов, для более точной синхронизации.Если есть двухлучевой осциллограф, желательно ,подбором резисторов R33 ,R40 ,R47, подогнать момент формирования импульса к точке пересечения синусоид. Но это не обязательное условие. Используемые оптроны АОТ 101 можно заменить любыми аналогичными, и доступными, единственное требование к ним — высокое пробивное напряжение, так как именно оптроны гальваническую развязку блока управления от сети. Можно найти более простую схему детектора нуля, и собирать ее, но с учетом подключения на межфазное 380 В. Очень желательно использовать предохранители , как показано в схеме, так же желательно использовать отдельный автоматический выключатель на этот блок.

Блок управления и индикации

Это основной блок. Микроконтроллер ATmega8 выдает импульсы управления на тиристоры, и обеспечивает индикацию режимов работы. Работает от внутреннего генератора, тактовая 8 МГц. Фьюзы приведены ниже на картинке. Семисегментный светодиодный индикатор с общим анодом, на три знака. Управляется через три анодных ключа Т1-Т3 , сегменты переключаются сдвиговым регистром. Можно не устанавливать индикатор, регистр и связанные с ними элементы, если не требуется настройки работы. Можно установить любой доступный тип индикаторов, но потребуется подбор токоограничивающих резисторов в цепи сегментов. Светодиод HL1 показывает основные состояния устройства.

Читайте также:  Можно ли заклеить обувь клеевым пистолетом

Пуск и остановка осуществляется переключателем SB1. Замкнутое состояние – Пуск, разомкнутое -Стоп. Регулировка мощности либо от кнопок Up ,Down, либо от задатчика R6, выбор осуществляется через меню. Дроссель L любой малогабаритный, нужен для лучшей фильтрации опорного напряжения АЦП микроконтроллера. Емкости С5 , С6 требуется установить, как можно ближе к выводам питания МК и регистра, в моем варианте они были напаяны на ножки поверх микросхем. В условиях больших токов и сильных помех они необходимы для надежной работы устройства.

Работа регулятора мощности

В зависимости от выбранной прошивки будет осуществляется регулирование либо фазоимпульсным методом, либо методом пропуска периодов так называемый алгоритм Брезенхема.

При фазоимпульсном регулировании напряжение на нагрузке плавно изменяется практически от нуля, до максимума, путем изменения угла открытия тиристоров. Импульс выдается два раза за период, одновременно на оба тиристора, но открыт будет только тот , к которому приложено напряжение в прямой полярности.

На малых напряжениях ( большой угол открытия) возможно перерегулирование , связанное с неточностью попадания импульса синхронизации в момент пересечения синусоид. Для исключения этого эффекта по умолчанию нижняя граница задана значением 10. Через меню , при необходимости можно изменить ее в диапазоне от 0 до 99. На практике этого ни разу не требовалось, но тут все зависит от конкретной задачи. Данный метод подходит для регулировки светового потока ламп накаливания, при условии их одинаковой мощности в каждой фазе.

Так же важно, чтобы чередование фаз сети было правильным А-В-С. Для проверки можно при включении устройства провести тест на правильное чередование фаз. Для этого необходимо при включении устройства , когда на индикаторе отображаются символы — 0 — держать нажатой кнопку menu , если фазировка правильная индикатор отобразит символы AbC ,если нет ACb, и требуется перебросить местами две любые фазы.

Если отпустить кнопку menu устройство перейдет в основной режим работы.

При использовании регулирования методом пропуска периодов, не требуется фазировка и тест в прошивку не введен. В этом случае тиристоры открываются одновременно , можно представить их как простой пускатель коммутирующий все три фазы сразу. Чем больше нужна мощность на нагрузке , тем большее количество раз в единицу времени , тиристоры будут в проводящем состоянии. Данный метод не подходит для ламп накаливания.

В настройке устройство не нуждается.

При включении происходит считывание настроек из энергонезависимой памяти МК, если в памяти нет значений, либо они некорректны, устанавливаются значения по умолчанию. Далее МК проверяет наличие импульсов синхронизации и состояние переключателя SB1. Если SB1 в разомкнутом состоянии импульсы управления не выдаются , на индикатор выводится сообщение OFF , светодиод HL1 мигает с высокой частотой. Если замкнуть SB1 на индикаторе высветится текущее задание мощности, будут формироваться импульсы управления , светодиод HL1 светится постоянно. Если при пуске либо во время работы пропадут управляющие импульсы более чем на 10 секунд, индикатор отобразит цифры 380 , светодиод будет моргать с низкой частотой, импульсы управления тиристорами снимутся. При появлении импульсов синхронизации , устройство вернется к работе. Так было сделано в связи с плохой сетью в месте эксплуатации устройства, частыми перебоями и перекосами фаз.

Меню содержит четыре подменю, переключаемых кнопкой menu , если кнопка не нажата некоторое время, отображается текущий установленный уровень мощности условно от 0 до 100. Уровень мощности изменяется кнопками Up или Down, либо , если разрешено(по умолчанию) ,потенциометром.

Длительное нажатие кнопки menu переключает подменю.

Подменю 1 на индикаторе отображается Грˉ это верхняя граница регулирования мощности, при нажатии кнопок Up или Down, будет показано текущее значение , его возможно изменять в большую или меньшую сторону, в пределах границ. По умолчанию значение 99.

Подменю 2 на индикаторе Гр_ это нижняя граница регулирования мощности, все аналогично , значение по умолчанию 10.

Подменю 3 показывает используется ли задание от потенциометра 1 – да 0- нет. На индикаторе 3-1 либо 3-0, выбор нажатием кнопок Up или Down. По умолчанию – используется(1).

Подменю 4 на индикаторе ЗАП , при нажатии любой из кнопок Up или Down, произойдет запись текущих значений в энергонезависимую память МК. При записи произойдет однократное мигание надписи ЗАП. Будут записаны границы регулирования, разрешен ли потенциометр и текущее значение мощности, если оно устанавливается кнопками, а потенциометр не используется.

Следующее нажатие menu , переключит в основное меню, будет отображено значение мощности. Так же длительное не нажатие кнопок переключит меню на основное.

Читайте также:  Краскопульт для покраски потолка водоэмульсионной краской

Можно не использовать семисегментный светодиодный индикатор ,если не требуется ничего изменять, в этом случае все будет работать, регулироваться от 10 до 99 при помощи потенциометра. Состояние устройства покажет светодиод HL1 . Собственно индикатор был нужен на этапе отладки и для последующей модернизации. В планах построить на этой базе регулятор для индуктивной нагрузки , и сделать устройство плавного пуска асинхронного двигателя.

Печатная плата разрабатывалась для блока синхронизации и для блока управления, но в итоге из за переработок блок управления был сделан навесным способом, на макетной плате, Печатная плата"как есть" в архиве, разводка семисегментного индикатора выполнена под имеющийся у меня индикатор, при необходимости можно программно сменить соответствующие сегментам вывода. Часть деталей ( RC цепи , резисторы и диоды силовой схемы, элементы блока питания, кнопки, потенциометр и светодиоды) монтировались так же навесным способом.

В архиве представлена плата блока управления и блока синхронизации, в формате sprint layout, и схемы в формате Splan 7, там же два варианта прошивки под фазоимпульсное управление и управление пропуском периодов. МК шился программатором "пять проводков" под управлением программы Uniprof , скачать ее можно на сайте автора http://avr.nikolaew.org/

фьюзы представлены ниже.

Фьюзы даны для установки в этой программе , при использовании другой — Помните, что включенный FUSE — это FUSE без галочки!

Печатные платы не оптимальны , и скорее всего , при повторении придется доработать их под имеющиеся в наличии детали, и конкретную конфигурацию и расположение элементов ( кнопок , потенциометра, индикатора, диодов и оптронов). Так же обратите внимание на контактные площадки, если сверлить отверстия диаметром 0,5-0,7 мм затруднительно, то перед печатью нужно увеличить размер контактных площадок. Главное требование для блока синхронизации — учитывайте , что напряжение высокое и может быть пробой по поверхности текстолита, и по поверхности деталей,поэтому желательно использовать выводные детали с большим расстоянием между выводами. По этой же причине мосты набраны из отдельных диодов. Не нужно экономить место и текстолит ! напряжение в отдельных точках платы синхронизации может достигать 600 вольт ! Плату после изготовления нужно покрывать электроизоляционным лаком, желательно в два — три слоя, чтобы исключить пробой по пыли.

Видео представлено при работе в режиме фазоимпульсного регулирования, на осциллографе сигнал с трансформаторов тока ,включенных в две фазы, нагрузка три лампы накаливания по 1 КВт. На видео макет устройства используемый для отладки.

Литература

  • В.М. Яров . "Источники питания электрических печей сопротивления" учебное пособие 1982г.
  • А.В.Евстифеев "Микроконтроллеры AVR семейства Mega, руководство пользовтеля " 2007г.

Тиристорный регулятор мощности — довольно распространенная конструкция, имеющая множество модификаций. В обычной жизни самым ярким примером такого прибора можно назвать выключатель для управления яркостью светильника. Это регулятор с крутящейся ручкой, который позволяет плавно убавлять или прибавлять мощность. В промышленных масштабах принцип работы этого прибора тот же.

Как работает тиристорный регулятор мощности?

Для того чтобы понять принцип работы регулятора мощности, нужно сначала объяснить, что же такое тиристор. Это очень простая конструкция, похожая на обычный диод. Собственно, по старой терминологии тиристор иногда и называли управляемым диодом.

До тех пор, пока на управляющий электрод не подан импульс, тиристор закрыт в любом направлении. Включение обычного тиристора осуществляется подачей импульса тока в цепь управления положительной относительно катода полярности. Среди способов выключения тиристоров принято различать естественное выключение (или естественную коммутацию) и принудительное (или искусственную коммутацию). Естественная коммутация происходит при работе тиристоров в цепях переменного тока в момент спадания напряжения до нуля.

Наиболее широкое применение в тиристорных регуляторах мощности получили фазовое и широтно-импульсное управление тиристорами.

При фазовом методе способ управления тиристором сводится к тому, что если в момент положительного напряжения на аноде в интервале от 0 до 180° варьировать моментом отпирания тиристора, то ток в нагрузке будет протекать только в течение какой-то определенной части полупериода. Так как при небольшой задержке тиристор может быть открыт в начале положительного полупериода напряжения, при больших задержках — в любой точке положительного полупериода. Тем самым можно регулировать средний за период ток, проходящий в нагрузке от максимального до почти нулевого значения. Способ получил название фазового регулирования, поскольку при этом изменяется сдвиг фаз между началом положительного полупериода анодного напряжения и началом протекания прямого тока. Фазовый сдвиг φ может регулироваться примерно от 5 до 170°.

Читайте также:  Как найти сопротивление шунта

Однофазные и трехфазные тиристорные регуляторы мощности, работающие по фазовому методу, имеют один недостаток — это резкое изменение тока в нагрузке. Если к такой схеме подключить лампу, она обязательно будет мигать из-за того, что частота подачи нагрузки на нее уменьшается. То есть получается, что она начинает больше не гореть, чем гореть, и это становится заметно. Кроме того, если такой тиристорный регулятор мощности включен в цепь автоматического управления на большую нагрузку, он, скорее всего, будет выдавать помехи. Компенсировать их можно при помощи специальных LC-фильтров.

Более надежным в этом плане является тиристорный регулятор мощности, работающий по принципу широтно-импульсного управления — на управляющий электрод тиристора подаются импульсы напряжения, синхронизированные с напряжением нагрузки. То есть моменты коммутации совпадают с моментами перехода сетевого напряжения через ноль, поэтому уровень радиопомех в них резко снижен. От длительности включения управляющего импульса зависит мощность на выходе регулятора. Такой метод идеально подходит для управления инерционными процессами, в частности, протекающими в различных нагревательных элементах.

Тиристорные регуляторы мощности находят широкое применение как в бытовых условиях, так и в производственных цехах. В первом случае используются однофазные устройства, во втором — трехфазные.

Тиристорные регуляторы позволяют производить плавное регулирование мощности ламп, нагревательных устройств и другого оборудования, в том числе и специализированного. Также в них предусмотрена возможность подключения внешнего ручного регулирования или автоматического управления.

Обратившись в компанию «ОвенКомплектАвтоматика», вы можете заказать тиристорные регуляторы на выгодных условиях. Определиться с выбором конкретного устройства вам помогут наши специалисты.

Чтобы задать интересующие вопросы или сделать заказ, позвоните по телефонам, представленным на сайте.

Трехфазный тиристорный регулятор мощности RP3 рассчитан для систем автоматической регулировки температуры в различных электронагревательных установках.

Прибор применим в электрических цепях с резистивной или индуктивной нагрузкой и резистивной нагрузкой.

Тиристорный регулятор мощности RP3 представляет собой тиристорную систему с триггерным управлением.

Регулятор мощности RP3 позволяет преобразовывать мощность, поступающую от источника с переменным напряжением, с помощью аналогового или импульсного управляющего сигнала.

Основные области применения:

  • электрические печи и сушильные установки — промышленные печи различного типа, печи для отжига и жесткой пайки, плавильные агрегаты, печи для закалки в солевых ваннах.
  • в машиностроении — агрегаты и экструзивные прессы для пластмасс, устройств проветривания и смешения, точечной и шовной сварки.
  • в производства стекла — установки сушки инфракрасным и ультрафиолетовым излучением, ковши для плавки стекла и нагрева, печи для формировки стекла.
  • в химической и нефтяной промышленности — лицевые нагреватели труб, установки предварительного нагрева.

Входной управляющий сигнал, тип управления, конфигурацию нагрузки (3/4 проводная) задаются перемычками на регуляторе.

Тиристорный регулятор мощности RP3 с входным управлением 4. 20 мА, 0. 20 мА, 0. 10 В, 0. 5 В.

Тиристорный регулятор мощности RP3 с выходным управлением: фазным, релейным (вкл/выкл), импульсным (быстрый цикл: f макс.- 1 Гц, медленный цикл: f макс.- 0,1 Гц)

Тиристорный регулятор мощности RP3 — с максимальным выходным током в зависимости от модели: 40 A, 70 A, 125 A, 200 A, 300 A, 450 A.

Тиристорный регулятор мощности RP3 — дополнительные функции

  • ограничение тока нагрузки,
  • режим мягкого старта,
  • управление значением начального угла переключения,
  • управление усилением входной линии,
  • внешний запрет переключения триггера,
  • мониторинг тока в цепи нагрузки, Uвых=f(Io), сигнализация аварии,
  • контроль температуры радиатора,
  • оповещение о перегрузке,
  • оповещение о выходе из строя предохранителя,
  • контроль правильности чередования фаз,
  • релейные выходы.

— 40 A, 70 A, 125 A — для данных регуляторов 212 х 318 х 177 мм
— 200 A, 300 A, 450 A — для данных регуляторов 383 х 433 х 281 мм

— 40 A, 70 A, 125 A — 8.5 кг
— 200 A, 300 A, 450 A — 37 кг

Подробнее технические характеристики Вы можете скачать в разделе ТЕХНИЧЕСКАЯ ДОКУМЕНТАЦИЯ.

Отправить ответ

  Подписаться  
Уведомление о
Adblock
detector