Агрегатное состояние углекислого газа

Углекислота жидкая (СО2, двуокись углерода, диоксид углерода)

  • Углекислота жидкая — это, сжиженный углекислый газ под очень высоким давлением, которое обычно равно 70 атмосферам. Жидкость, как и газ, абсолютно бесцветна, имеет слегка кислый привкус.
  • Поставляется и хранится углекислота в:
  • 40-литровых герметичных баллонах, которые защищены от коррозийных разрушений — срок хранения 2 года.
  • В транспортной бочке ЦЖУ-18 — срок хранения 6 месяцев.
  • Изготавливается в соответствии с ГОСТ 8050-50 «Двуокись углерода»
  • Чтобы узнать цены и сроки поставки нажмите подробнее.
  • Углекислота (СО2, двуокись углерода, диоксид углерода) – вещество с химическое формулой СО2 и молекулярной массой 44,011 г/моль, которое может существовать в четырёх фазовых состояниях – газообразном, жидком, твёрдом и сверхкритическом.

    Газообразное состояние СО2 носит общеупотребительное название «углекислый газ». При атмосферном давлении это бесцветный газ без цвета и запаха, при температуре +20 ?С плотностью 1,839 кг/м? (в 1,52 раза тяжелее воздуха), хорошо растворяется в воде (0,88 объёма в 1 объёме воды), частично взаимодействуя в ней с образованием угольной кислоты. Входит в состав атмосферы в среднем 0,035% по объёму. При резком охлаждении за счёт расширения (детандирование) СО2 способен десублимироваться – переходить сразу в твёрдое состояние, минуя жидкую фазу.

    Газообразный диоксид углерода ранее нередко хранили в стационарных газгольдерах. В настоящее время такой способ хранения не применяется; углекислый газ в необходимом количестве получают непосредственно на месте – путём испарения жидкой углекислоты в газификаторе. Далее газ можно легко перекачать по любому газопроводу под давлением 2-6 атмосфер.

    Жидкое состояние СО2 носит техническое название «жидкая углекислота» или просто «углекислота». Это бесцветная жидкость без запаха, средней плотностью 771 кг/м3, которая существует только под давлением 3 482…519 кПа при температуре 0…-56,5 град.С («низкотемпературная углекислота»), либо под давлением 3 482…7 383 кПа при температуре 0…+31,0 град.С («углекислота высокого давления»). Углекислоту высокого давления получают чаще всего путём сжатия углекислого газа до давления конденсации, при одновременном охлаждении водой. Низкотемпературную углекислоту, являющейся основной формой диоксида углерода для промышленного потребления, чаще всего получают по циклу высокого давления путём трехступенчатого охлаждения и дросселирования в специальных установках.

    При небольшом и среднем потреблении углекислоты (высокого давления),т для её хранения и транспортировки используют разнообразные стальные баллоны (от баллончиков для бытовых сифонов до ёмкостей вместимостью 55 л). Самым распространенным является 40 л баллон с рабочим давление 15 000 кПа, вмещающим 24 кг углекислоты. За стальными баллонами не требуется дополнительный уход, углекислота сохраняется без потерь в течение длительного времени. Баллоны с углекислотой высокого давления окрашивают в чёрный цвет.

    При значительном потреблении, для хранения и транспортировки низкотемпературной жидкой углекислоты используют изотермические цистерны самой разнообразной вместимости, оснащённые служебными холодильными установками. Существуют накопительные (стационарные) вертикальные и горизонтальные цистерны вместимостью от 3 до 250 т, транспортируемые цистерны вместимостью от 3 до 18 т. Цистерны вертикального исполнения требуют строительства фундамента и используются преимущественно в условиях ограниченного пространства для размещения. Применение горизонтальных цистерн позволяет снизить затраты на фундаменты, особенно при наличии общей рамы с углекислотной станцией. Цистерны состоят из внутреннего сварного сосуда, изготовленного из низкотемпературной стали и имеющего пенополиуретановую или вакуумную теплоизоляцию; наружного кожуха из пластика, оцинкованной или нержавеющей стали; трубопроводов, арматуры и приборов контроля. Внутренняя и наружная поверхности сварного сосуда подвергаются специальной обработке, благодаря чему снижена до вероятность поверхностной коррозии металла. В дорогих импортных моделях наружный герметичный кожух выполнен из алюминия. Использование цистерн обеспечивает заправку и слив жидкой углекислоты; хранение и транспортировку без потерь продукта; визуальный контроль массы и рабочего давления при заправке, в процессе хранения и выдачи. Все типы цистерн оснащены многоуровневой системой безопасности. Предохранительные клапаны позволяют производить проверку и ремонт без остановки и опорожнения цистерны.

    При мгновенном снижении давления до атмосферного, происходящем при впрыске в специальную расширительную камеру (дросселировании), жидкий диоксид углерода мгновенно превращается в газ и тончайшую снегообразную массу, которую прессуют и получают диоксид углерода в твёрдом состоянии, который носит общеупотребительное название «сухой лёд». При атмосферном давлении это белая стекловидная масса плотностью 1 562 кг/м?, с температурой -78,5 ?С, которая на открытом воздухе сублимируется – постепенно испаряется, минуя жидкое состояние. Сухой лёд может быть также получен непосредственно на установках высокого давления, применяемых для получения низкотемпературной углекислоты, из газовых смесей, содержащих СО2 в количестве не менее 75-80%. Объёмная холодопроизводительность сухого льда почти в 3 раза больше, чем у водяного льда, и составляет 573,6 кДж/кг.

    Твёрдый диоксид углерода обычно выпускают в брикетах размером 200?100?20-70 мм, в гранулах диаметром 3, 6, 10, 12 и 16 мм, редко в виде тончайшего порошка («сухой снег»). Брикеты, гранулы и снег хранят не более 1-2 суток в стационарных заглублённых хранилищах шахтного типа, разбитых на небольшие отсеки; перевозят в специальных изотермических контейнерах с предохранительным клапаном. Используются контейнеры разных производителей вместимостью от 40 до 300 кг и более. Потери на сублимацию составляют, в зависимости от температуры окружающего воздуха 4-6% и более в сутки.

    При давлении свыше 7,39 кПа и температуре более 31,6 град.С диоксид углерода находится в так называемом сверхкритическом состоянии, при котором его плотность как у жидкости, а вязкость и поверхностное натяжение как у газа. Эта необычная физическая субстанция (флюид) является отличным неполярным растворителем. Сверхкритический CO2 способен полностью или выборочно экстрагировать любые неполярные составляющие с молекулярной массой менее 2 000 дальтон: терпеновые соединения, воски, пигменты, высокомолекулярные насыщенные и ненасыщенные жирные кислоты, алкалоиды, жирорастворимые витамины и фитостерины. Нерастворимыми веществами для сверхкритического CO2 являются целлюлоза, крахмал, органические и неорганические полимеры с высоким молекулярным весом, сахара, гликозидные вещества, протеины, металлы и соли многих металлов. Обладая подобными свойствами, сверхкритический диоксид углерода всё шире применяется в процессах экстракции, фракционирования и импрегнации органических и неорганических веществ. Он является также перспективным рабочим телом для современных тепловых машин.

    • Удельный вес. Удельный вес углекислоты зависит от давления, температуры и агрегатного состояния, в котором она находится.
    • Критическая температура углекислоты +31 град. Удельный вес углекислого газа при 0 град и давлении 760 мм рт.ст. равен 1, 9769 кг/м3.
    • Молекулярный вес углекислого газа 44,0. Относительный вес углекислого газа по сравнению с воздухом составляет 1,529.
    • Жидкая углекислота при температурах выше 0 град. значительно легче воды, и ее можно хранить только под давлением.
    • Удельный вес твердой углекислоты зависит от метода ее получения. Жидкая углекислота при замораживании превращается в сухой лед, представляющий прозрачное , стеклообразное твердое тело. В этом случае твердая углекислота имеет наибольшую плотность (при нормальном давлении в сосуде, охлаждаемом до минус 79 град., плотность равна 1,56). Промышленная твердая углекислота имеет белый цвет, по твердости близка к мелу,
    • ее удельный вес колеблется в зависимости от способа получения в пределах 1,3 — 1,6.
    • Уравнение состояния. Связь между объемом, температурой и давлением углекислого газа выражается уравнением
    • V= R T/p — A, где
    • V — объем, м3/кг;
    • R — газовая постоянная 848/44 = 19,273;
    • Т — температура, К град.;
    • р давление, кг/м2;
    • А — дополнительный член, характеризующий отклонение от уравнения состояния для идеального газа. Он выражается зависимостью А =( 0, 0825 + (1,225)10-7 р)/(Т/100)10/3.
    • Тройная точка углекислоты. Тройная точка характеризуется давлением 5,28 ата (кг/см2) и температурой минус 56,6 град.
    • Углекислота может находиться во всех трех состояниях (твердом, жидком и газообразном) только в тройной точке. При давлениях ниже 5,28 ата (кг/см2) (или при температуре ниже минус 56,6 град.) углекислота может находиться только в твердом и газообразном состояниях.
    • В парожидкостной области, т.е. выше тройной точки, справедливы следующие соотношения
    • i’ x + i» у = i,
    • x + у = 1, где,
    • x и у — доля вещества в жидком и парообразном виде;
    • i’ — энтальпия жидкости;
    • i» — энтальпия пара;
    • i — энтальпия смеси.
    • По этим величинам легко определить величины x и у. Соответственно для области ниже тройной точки будут действительны следующие уравнения:
    • i» у + i» z = i,
    • у + z = 1, где,
    • i» — энтальпия твердой углекислоты;
    • z — доля вещества в твердом состоянии.
    • В тройной точке для трех фаз имеются также только два уравнения
    • i’ x + i» у + i»’ z = i,
    • x + у + z = 1.
    • Зная значения i,’ i’,’ i»’ для тройной точки и используя приведенные уравнения можно определить энтальпию смеси для любой точки.
    • Теплоемкость. Теплоемкость углекислого газа при температуре 20 град. и 1 ата составляет
    • Ср = 0,202 и Сv = 0,156 ккал/кг*град. Показатель адиабаты k =1,30.
    • Теплоемкость жидкой углекислоты в диапазоне температур от -50 до +20 град. характеризуется следующими значениями, ккал/кг*град. :
    • Град.С -50 -40 -30 -20 -10 0 10 20
    • Ср, 0,47 0,49 0,515 0,514 0,517 0,6 0,64 0,68
    • Точка плавления. Плавление твердой углекислоты происходит при температурах и давлениях, соответствующих тройной точке (t = -56,6 град. и р = 5,28 ата) или находящихся выше ее.
    • Ниже тройной точки твердая углекислота сублимирует. Температура сублимации является функцией давления: при нормальном давлении она равна -78,5 град., в вакууме она может быть -100 град. и ниже.
    • Энтальпия. Энтальпию пара углекислоты в широком диапазоне температур и давлений определяют по уравнению Планка и Куприянова.
    • i = 169,34 + (0,1955 + 0,000115t)t — 8,3724 p(1 + 0,007424p)/0,01T(10/3), где
    • I – ккал/кг, р – кг/см2, Т – град.К, t – град.С.
    • Энтальпию жидкой углекислоты в любой точке можно легко определить путем вычитания из энтальпии насыщенного пара величины скрытой теплоты парообразования. Точно так же , вычитая скрытую теплоту сублимации, можно определить энтальпию твердой углекислоты.
    • Теплопроводность. Теплопроводность углекислого газа при 0 град. составляет 0,012 ккал/м*час*град.С, а при температуре -78 град. она понижается до 0,008 ккал/м*час*град.С.
    • Данные о теплопроводности углекислоты в 10 4 ст. ккал/м*час*град.С при плюсовых температурах приведены в таблице.
    • Давление, кг/см2 10 град. 20 град. 30 град. 40 град.
    • Газообразная углекислота
    • 1 130 136 142 148
    • 20 — 147 152 157
    • 40 — 173 174 175
    • 60 — — 228 213
    • 80 — — — 325
    • Жидкая углекислота
    • 50 848 — — —
    • 60 870 753 — —
    • 70 888 776 — —
    • 80 906 795 670
      Теплопроводность твердой углекислоты может быть вычислена по формуле :
      236,5/Т1,216 ст., ккал/м*час*град.С.

      Коэффициент теплового расширения. Объемный коэффициент расширения а твердой углекислоты рассчитывают в зависимости от изменения удельного веса и температуры. Линейный коэффициент расширения определяют по выражению b = a/3. В диапазоне температур от -56 до -80 град. коэффициенты имеют следующие значения: а *10*5ст. = 185,5-117,0, b* 10* 5 cт. = 61,8-39,0.

    • Вязкость. Вязкость углекислоты 10 *6ст. в зависимости от давления и температуры (кг*сек/м2)
    • Давление, ата -15 град. 0 град. 20 град. 40 град .
    • 5 1,38 1,42 1,49 1,60
    • 30 12,04 1,63 1,61 1,72
    • 75 13,13 12,01 8,32 2,30
    • Диэлектрическая постоянная. Диэлектрическая постоянная жидкой углекислоты при 50 – 125 ати, находится в пределах 1,6016 – 1,6425.
    • Диэлектрическая постоянная углекислого газа при 15 град. и давлении 9,4 — 39 ати 1,009 – 1,060.
    • Влагосодержание углекислого газа. Содержание водяных паров во влажном углекислом газе определяют с помощью уравнения,
    • Х = 18/44 * p’/p – p’ = 0,41 p’/p – p’ кг/кг, где
    • p’ – парциальное давление водяных паров при 100%-м насыщении;
    • р – общее давление паро-газовой смеси.
    • Растворимость углекислоты в воде. Растворимость газов измеряется объемами газа, приведенными к нормальным условиям (0 град, С и 760 мм рт. ст.) на объем растворителя.
    • Растворимость углекислоты в воде при умеренных температурах и давлениях до 4 – 5 ати подчиняется закону Генри, который выражается уравнением
    • Р = Н Х, где
    • Р — парциальное давление газа над жидкостью;
    • Х — количество газа в молях;
    • Н – коэффициент Генри.
    • Жидкая углекислота как растворитель. Растворимость смазочного масла в жидкой углекислоте при температуре -20град. до +25 град. составляет 0,388 г в100 СО2,
    • и увеличивается до 0,718 г в 100 г СО2 при температуре +25 град. С.
    • Растворимость воды в жидкой углекислоте в диапазоне температур от -5,8 до +22,9 град. составляет не более 0,05% по весу.

    При применении сухого льда, при использовании сосудов с жидкой низкотемпературной углекислотой должно обеспечиваться соблюдение мер безопасности, предупреждающих обморожение рук и других участков тела работника.

    Углекислый газ, или диоксид углерода, или CO2 — одно из самых распространенных на Земле газообразных веществ. Он окружает нас в течение всей нашей жизни. Углекислый газ не имеет цвета, вкуса и запаха и никак не ощущается человеком.

    Он является важным участником обмена веществ живых организмов. Газ сам по себе не ядовит, но не поддерживает дыхание, поэтому превышение его концентрации ведет к ухудшению снабжения тканей организма кислородом и к удушью. Углекислый газ широко применяется в быту и в промышленности.

    Что такое диоксид углерода

    При атмосферном давлении и комнатной температуре диоксид углерода находится в газообразном состоянии. Это наиболее часто встречающаяся его форма, в ней он участвует в процессах дыхания, фотосинтеза и обмена веществ живых организмов.

    При охлаждении до -78 °С он, минуя жидкую фазу, кристаллизуется и образует так называемый «сухой лед», широко применяемый как безопасный хладагент в пищевой и химической промышленности и в уличной торговле и рефрижераторных перевозках.

    При» особых условиях — давлении в десятки атмосфер — углекислота переходит в жидкое агрегатное состояние. Это происходит на морском дне, на глубине свыше 600 м.

    Свойства углекислого газа

    В 17 веке Жан-Батист Ван Гельмонт из Фландрии открыл углекислый газ и определил его формулу. Подробное исследование и описание было сделано столетие спустя шотландцем Джозефом Блэком. Он исследовал свойства углекислого газа и провел серию опытов, в которых доказал, что он выделяется при дыхании животных.

    В состав молекулы вещества входит один атом углерода и два атома кислорода. Химическая формула углекислого газа записывается как CO2

    В нормальных условиях не обладает вкусом, цветом и запахом. Только вдыхая большое его количество, человек ощущает кислый привкус. Его дает угольная кислота, образующаяся в малых дозах при растворении углекислого газа в слюне. Эта особенность применяется для приготовления газированных напитков. Пузырьки в шампанском, просекко, пиве и лимонаде — это и есть углекислый газ, образовавшийся в результате естественных процессов брожения или добавленный в напиток искусственно.

    Физические свойства углекислого газа

    Плотность углекислого газа больше плотности воздуха, поэтому при отсутствии вентиляции он скапливается внизу. Он не поддерживает окислительные процессы, такие, как дыхание и горение.

    Поэтому углекислоту применяют в огнетушителях. Это свойство углекислого газа иллюстрируют с помощью фокуса — горящую свечу опускают в «пустой» стакан, где она и гаснет. В действительности стакан заполнен CO2.

    Углекислый газ в природе естественные источники

    К таким источникам относятся окислительные процессы разной интенсивности:

    • Дыхание живых организмов. Из школьного курса химии и ботаники все помнят, что в ходе фотосинтеза растения поглощают углекислый газ и выделяют кислород. Но не все помнят, что это происходит только днем, при достаточном уровне освещения. В темное время суток растения наоборот, поглощают кислород и выделяют углекислый газ. Так что попытка улучшить качество воздуха в комнате, превращая ее в заросли фикусов и герани может сыграть злую шутку.
    • Извержения и другая вулканическая активность. CO2 выбрасывается из глубин мантии Земли вместе с вулканическими газами. В долинах рядом с источниками извержений газа настолько много, что, скапливаясь в низинах, он вызывает удушье животных и даже людей. Известны несколько случаев в Африке, когда задыхались целые деревни.
    • Горение и гниение органики. Горение и гниение — это одна и та же реакция окисления, но протекающая с разной скоростью. Богатые углеродом разлагающиеся органические остатки растений и животных, лесные пожары и тлеющие торфяники — все это источники диоксида углерода.
    • Самым же большим природным хранилищем CO2 являются воды мирового океана, в которых он растворен.

    Углекислый газ в природе

    За миллионы лет эволюции основанной на углеродных соединениях жизни на Земле в различных источниках накопились многие миллиарды тонн углекислого газа. Его одномоментный выброс в атмосферу приведет к гибели всего живого на планете из-за невозможности дыхания. Хорошо, что вероятность такого одномоментного выброса стремится к нулю.

    Искусственные источники углекислого газа

    Углекислый газ попадает в атмосферу и в результате человеческой жизнедеятельности. Самыми активными источниками в наше время считаются:

    • Индустриальные выбросы, происходящие в ходе сгорания топлива на электростанциях и в технологических установках
    • Выхлопные газы двигателей внутреннего сгорания транспортных средств: автомобилей, поездов, самолетов и судов.
    • Сельскохозяйственные отходы — гниение навоза в больших животноводческих комплексах

    Кроме прямых выбросов, существует и косвенное воздействие человека на содержание CO2 в атмосфере. Это массовая вырубка лесов в тропической и субтропической зоне, прежде всего в бассейне Амазонки.

    Искусственный источник углекислого газа

    Несмотря на то, что в атмосфере Земли содержится менее процента диоксида углерода, он оказывает все возрастающее действие на климат и природные явления. Углекислый газ участвует в создании так называемого парникового эффекта путем поглощения теплового излучения планеты и удерживания этого тепла в атмосфере. Это ведет к постепенному, но весьма угрожающему повышению среднегодовой температуры планеты, таянию горных ледников и полярных ледяных шапок, росту уровня мирового океана, затоплению прибрежных регионов и ухудшению климата в далеких от моря странах.

    Знаменательно, что на фоне общего потепления на планете происходит значительное перераспределение воздушных масс и морских течений, и в отдельных регионах среднегодовая температура не повышается, а понижается. Это дает козыри в руки критикам теории глобального потепления, обвиняющим ее сторонников в подтасовке фактов и манипуляции общественным мнением в угоду определенным политическим центрам влияния и финансово-экономическим интересам

    Человечество пытается взять под контроль содержание углекислого газа в воздухе, были подписаны Киотский и Парижский протоколы, накладывающие на национальные экономики определенные обязательства. Кроме того, многие ведущие автопроизводители автомобилей объявили о сворачивании к 2020-25 годам выпуска моделей с двигателями внутреннего сгорания и переходе на гибриды и электромобили. Однако некоторые ведущие экономики мира, такие, как Китай и США, не торопятся выполнять старые и брать на себя новые обязательства, мотивируя это угрозой уровню жизни в своих странах.

    Углекислый газ и мы: чем опасен CO2

    Углекислый газ — один из продуктов обмена веществ в организме человека. Он играет большую роль в управлении дыханием и снабжением кровью органов. Рост содержания CO2 в крови вызывает расширение сосудов, способных таким образом транспортировать больше кислорода к тканям и органам. Аналогично и система дыхания понуждается к большей активности, если концентрация углекислоты в организме растет. Это свойство используют в аппаратах искусственной вентиляции легких, чтобы подстегнуть собственные органы дыхания пациента к большей активности.

    Кроме упомянутой пользы, превышение концентрации СO2 может принести организму и вред. Повышенное содержание во вдыхаемом воздухе приводит к тошноте, головной боли, удушью и даже к потере сознания. Организм протестует против углекислого газа и подает человеку сигналы. При дальнейшем увеличении концентрации развивается кислородное голодание, или гипоксия. Co2 мешает кислороду присоединяться к молекулам гемоглобина, которые и осуществляют перемещение связанных газов по кровеносной системе. Кислородное голодание ведет к снижению работоспособности, ослаблению реакции и способностей к анализу ситуации и принятию решений, апатии и может привести к смерти.

    Общие симптомы отравления углекислым газом

    Такие концентрации углекислого газа, к сожалению, достижимы не только в тесных шахтах, но и в плохо проветриваемых школьных классах, концертных залах, офисных помещениях и транспортных средствах — везде, где в замкнутом пространстве без достаточного воздухообмена с окружающей средой скапливается большое количество людей.

    Основное применение

    CO2 широко применяется в промышленности и в быту – в огнетушителях и для изготовления газировки, для охлаждения продуктов и для создания инертной среды при сварке.

    Основное применение углекислого газа

    Применение углекислого газа отмечено в таких отраслях, как:

    • для чистки поверхностей сухим льдом.

    Фармацевтика

    • для химического синтеза компонентов лекарственных средств;
    • создания инертной атмосферы;
    • нормализация индекса pH отходов производства.

    Углекислый газ в фармацевтике

    Пищевая отрасль

    • производство газированных напитков;
    • упаковка продуктов питания в инертной атмосфере для продления срока годности;
    • декаффеинизация кофейных зерен;
    • замораживание или охлаждение продуктов.

    Углекислый газ в пищевой отрасли

    Медицина, анализы и экология

    • Создание защитной атмосферы при полостных операциях.
    • Включение в дыхательные смеси в качестве стимулятора дыхания.
    • В хроматографических анализах.
    • Поддержание уровня pH в жидких отходах производства.

    Углекислый газ и экология

    Электроника

    • Охлаждение электронных компонентов и устройств при тестировании на температурную стойкость.
    • Абразивная очистка в микроэлектронике (в твердой фазе).
    • Очищающее средство в производстве кремниевых кристаллов.

    Химическая отрасль

    Широко применяется в химическом синтезе в качестве реагента и в качестве регулятора температур в реакторе. CO2 отлично подходит для обеззараживания жидких отходов с низким индексом pH.

    Использование углекислого газа

    Применяется также для осушения полимерных веществ, растительных или животных фиброматериалов, в целлюлозном производстве для нормализации уровня pH как компонентов основного процесса, так и его отходов.

    Металлургическая отрасль

    В металлургии CO2 в основном служит делу экологии, защиты природы от вредных выбросов путем их нейтрализации:

    Применение углекислого газа в металлургии

    • В черной металлургии — для нейтрализации плавильных газов и для донного перемешивания расплава.
    • В цветной металлургии при производстве свинца, меди, никеля и цинка — для нейтрализации газов при транспортировке ковша с расплавом или горячих слитков.
    • В качестве восстановительного агента при организации оборота кислотных шахтных вод.

    Сварка в углекислой среде

    Процесс сварки с применением углекислого газа

    Разновидность сварки под флюсом является сварка в углекислой среде. Операции сварочных работ с углекислым газом осуществляется плавящимся электродом и распространен в процессе монтажных работ, устранении дефектов и исправления деталей с тонкими стенками.

    Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

    Эмпирическая формула . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . СО

    Молекулярная масса, кг/кмоль . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..28,01

    Агрегатное состояние . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . газообразное

    Внешний вид . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .бесцветный газ

    Запах . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . без запаха.

    Применение: как одно из исходных соединений, лежащих в основе современной промышленности органического синтеза. Используют для восстановления металлов из окислов, для получения карбонилов металлов, фосгена, сероокиси углерода, хлористого алюминия, метилового спирта, формамида, ароматических альдегидов, муравьиной кислоты и др.

    Плотность при 0 °С и давлении 101,3 кПа, кг/м3 . . . . . . . . . . . . . . . . . . . . . 1,250

    Плотность при 20 °С и давлении 101,3 кПа, кг/м3 . . . . . . . . . . . . . . . . . . . . 1,165

    Температура кипения, °С . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . минус 192

    Температура плавления при давлении 101,3 кПа, °С . . . . . . . . . . . .минус 205

    Критическая температура, °С . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . минус 138,7

    Критическое давление, МПа . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3,5

    Теплота сгорания, кДж/моль . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . минус 283

    Удельная теплота сгорания, кДж/моль . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10107

    Теплота образования, кДж/моль . . . . . . . . . . . . . . . . . . . . . . . . . . . . . минус 110,5

    Теплоемкость газа при 0°С и постоянном давлении, кДж/(кг?град) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1,0416

    Теплоемкость газа при 0°С и постоянном объеме, кДж/(кг?град) . . . .0,7434

    Динамическая вязкость, Н?с/м2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166,04?107

    Кинематическая вязкость, м2/с . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13,55?106

    Коэффициент теплопроводности газа при 0°С и давлении 101,3 кПа, Вт/(м?К) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0,0233

    Температуры в °С, соответствующие давлению насыщенного пара

    *т — твердое вещество.

    Растворимость в воде: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . растворим

    Реакционная способность: сравнительно хорошо растворяется, особенно под давлением, в растворах дихлорметана (СН2Cl2), гидрооксида аммония, соляной кислоте. При низких температурах оксид углерода достаточно инертен; при высоких – легко вступает в различные реакции, в особенности, в реакции присоединения. Обладает восстановительными свойствами.

    Окисляется в СО2 при комнатной температуре.

    Регистрационный номер по CAS .

    ПДКм.р. в воздухе рабочей зоны, мг/м3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20*

    Код вещества, загрязняющего атмосферный воздух: . . . . . . . . . . . . . . . . .0337

    Класс опасности в атмосферном воздухе. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

    ПДКм.р./с.с. в атмосферном воздухе, мг/м3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5/3

    * — При длительности работы в атмосфере, содержащей оксид углерода не более 1ч ПДК оксида углерода может быть повышена до 50 мг/м3, при длительности работы не более 30 мин. – до 100 мг/м3, при длительности работ не более 15 мин. – 200 мг/м3. Повторные работы при условиях повышенного содержания оксида углерода в воздухе рабочей зоны могут проводиться с перерывом не менее, чем в 2ч.

    Воздействие на людей: ядовитое вещество, относится к веществам с остронаправленным механизмом действия, требующим автоматического контроля за его содержанием в воздухе. Токсическое действие на центральную нервную систему.

    Меры первой помощи пострадавшим от воздействия вещества: свежий воздух, освободить от стесняющей дыхание одежды, покой, согревание. Отравления тяжелой и средней степени лечат в стационаре.

    Меры предосторожности: обязательны местные вытяжные устройства и общая вентиляция помещений. Герметизация аппаратуры и коммуникаций. Постоянный контроль за концентрацией в воздухе рабочей зоны, использование автоматических приборов и сигнализационных устройств.

    Средства защиты: . . . . . . . . . . . . . . . . . . . . . . . . . . . фильтрующий противогаз.

    Группа горючести . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . горючий газ (ГГ)

    Температура самовоспламенения, °С . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 605

    Концентрационные пределы распространения пламени, % (об.) . . 12,5-74

    Минимальное взрывоопасное содержание кислорода, % (об.) при разбавлении:

    диоксидом углерода . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5,9

    Максимальное давление взрыва, кПа . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 730

    Безопасный экспериментальный максимальный зазор, мм . . . . . . . . . . 0,84

    Группа взрывоопасной смеси по ГОСТ Р 51330.5 . . . . . . . . . . . . . . . . . . . . . . . Т1

    Категория взрывоопасности смеси по ГОСТ Р 51330.11 . . . . . . . . . . . . . . . . .IIВ

    Средства пожаротушения: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . инертные газы.

    Отправить ответ

      Подписаться  
    Уведомление о
    Adblock
    detector