Чем отличается двигатель от мотора

ЧТО ВЫБРАТЬ: НОВЫЙ МОТОР ИЛИ КОНТРАКТНЫЙ?

В данной статье рассказывается о контрактных двигателях и тех ситуациях, когда их покупка и установка на автомобиль оправдана. Что лучше — новый мотор или контактный двигатель с пробегом?

ДЛЯ ЧЕГО ПОКУПАЮТ КОНТРАКТНЫЙ МОТОР?

Когда речь заходит о капитальном ремонте двигателя, то весь вопрос «упирается» в стоимость. Если говорить о ремонте многоцилиндровых моторов или двигателей большого объёма, то ценник только начинается с отметки в 100 000 рублей. Тогда владельцы задумываются о покупке нового мотора или контактного, если их устроит его цена.

Стоимость нового двигателя для «иномарки» в официальных каталогах сравнима со стоимостью качественного ремонта. Те, кто желает сэкономить, покупают б/у моторы или контрактные. В чем отличие контактных двигателей? Это моторы, которые поставляются из-за границы. Например, когда разбирают битый автомобиль на запчасти, а сами агрегаты не пострадали. Тогда продают двигатель, который может иметь малый пробег и хорошее состояние.

Но многие автолюбители связываться с контрактными моторами не спешат. Во многом опасения небеспочвенны. Даже честный продавец не даст никаких гарантий (или она будет минимальна). Тем не менее, в некоторых случаях оправдана покупка именно контрактного двигателя из-за более низкой цены.

Естественно, разбирать двигатель, чтобы оценить степень изношенности его деталей, никто из продавцов не станет. Это дорого и затруднительно. Куда проще заявить покупателю, что пробег у двигателя не большой, но при этом подчеркнуть, что никакой реальной гарантии на двигатель нет.

Сейчас, впрочем, хватает крупных игроков, которые работают на рынке давно и стараются удерживать на свой товар приемлемый ценник. Мало того – многие готовы продемонстрировать видеозапись с пуском и работой выбранного двигателя. И пусть реальную диагностику такой способ не заменит, но какое-то представление о состоянии агрегата получить позволит.

В ЧЕМ ПЛЮСЫ КОНТРАКТНОГО МОТОРА?

Несомненным плюсом контрактных двигателей является то, что практически все они привозятся к нам из-за рубежа. Это означает, что большинство автомобилей, на которых они были установлены, эксплуатировались в относительно тепличных условиях. Так что, при прочих равных привезённый из Европы или Японии двигатель будет в лучшем состоянии, чем эксплуатировавшийся у нас силовой агрегат.

Отдать предпочтение не ремонту, а контрактному двигателю стоит, если он по заверениям специалистов и механиков изначально обладает большим ресурсом. Логика проста – «одноразовые» двигатели, ресурс которых не превышает 180-200 тысяч километров, наверняка успели выработать большую часть ресурса. Покупать такой, чтобы он продержался всего 50-60 тысяч километров, экономически нецелесообразно.

Куда проще и дешевле сделать капитальный ремонт, после которого ресурс будет сравним с таковым у нового силового агрегата. А так называемые «двигатели-миллионники», даже если в Европе они уже успели пробежать 100-150 тысяч километров, вполне могут прослужить ещё 400-500 тысяч.

Не обойтись без контрактных двигателей тем, кто профессионально занимается тюнингом или авто спортом. Если оставить за скобками разного рода согласования при переоборудовании автомобиля, то, поменяв родной двигатель на контрактный, можно добиться существенной прибавки мощности или увеличить ресурс. Спортсменам, которые не эксплуатируют автомобили на дорогах общего пользования, ещё проще. Согласовывать изменения с множеством служб не придётся.

Оценить ресурс двигателя, если речь идёт о дорогом и редком моторе, все-таки можно. Достаточно попросить опытного мастера снять масляный поддон и посмотреть на состояние вкладышей. В идеале лучше снять головку блока и осмотреть стенки цилиндров. Эта процедура, в сравнении со стоимостью самого двигателя, обойдётся не дорого.

Дви́гатель — устройство, преобразующее какой-либо вид энергии в механическую работу. Термин мотор заимствован в первой половине XIX века из немецкого языка [1] (нем. Motor — «двигатель», от лат. mōtor — «приводящий в движение») и преимущественно им называют электрические двигатели и двигатели внутреннего сгорания [2] .

Двигатели подразделяют на первичные и вторичные. К первичным относят непосредственно преобразующие природные энергетические ресурсы в механическую работу, а ко вторичным — преобразующие энергию, выработанную или накопленную другими источниками.

К первичным двигателям (ПД) относятся ветряное колесо, использующее силу ветра, водяное колесо и гиревой механизм — их приводит в действие сила гравитации (падающая вода и сила притяжения), тепловые двигатели — в них химическая энергия топлива или ядерная энергия преобразуются в другие виды энергии. Ко вторичным двигателям (ВД) относятся электрические, пневматические и гидравлические двигатели.

Содержание

Первичные двигатели [ править | править код ]

Первыми первичными двигателями стали парус и водяное колесо. Парусом пользуются уже более 7 тысяч лет.

Читайте также:  Направляющие для ручной циркулярной пилы своими руками

Водяное колесо — норию широко применяли для оросительных систем в странах Древнего мира: Египте, Китае, Индии. Водяные и ветряные колёса широко использовались в Европе в средних веках как основная энергетическая база мануфактурного производства.

Паровые машины [ править | править код ]

В середине XVII века были сделаны первые попытки перехода к машинному производству, потребовавшие создания двигателей, не зависящих от местных источников энергии (воды, ветра и прочего). Первым двигателем, в котором использовалось тепловая энергия химического топлива, стала пароатмосферная машина, изготовленная по проектам французского физика Дени Папена и английского механика Томаса Севери. Эта машина была лишена возможности непосредственно служить механическим приводом, к ней «прилагалось в комплект» водяное мельничное колесо (по-современному говоря, гидротурбина), которое вращала вода, выжимаемая паром из парового котла в резервуар водонапорной башни. Котел то подогревался паром, то охлаждался водой: машина действовала периодически.

В 1763 году русский механик Иван Иванович Ползунов изготовил по собственному проекту стационарную паровую машину непрерывного действия. В ней были сдвоены два цилиндра, поочерёдно заполнявшиеся паром, и также подающими воду на башню, но — постоянно.

К 1784 году английский механик Джеймс Уатт создал более совершенную паровую машину, названную универсальным паровым двигателем. Уатт с детства работал подручным на машине конструкции Севери. В его задачу входило постоянно переключать краны подачи пара и воды на котел. Эта однообразная работа изрядно надоела изобретателю и побудила изобрести как поршень двойного хода, так и автоматическую клапанную коробку (потом и центробежный предохранитель). В машине был предусмотрен в цилиндре жесткий поршень, по обе стороны которого поочередно подавался пар. Все происходило в автоматическом режиме и непрерывно. Поршень вращал через кривошипно—шатунную систему маховик, обеспечивающий плавность хода. Паровая машина могла теперь стать приводом различных механизмов и перестала быть привязана к водонапорной башне. Элементы, придуманные Уаттом, входили в той или иной форме во все паровые машины. Паровые машины совершенствовали и применяли для решения различных технических задач: привода станков, судов, экипажей для перевозки людей по дорогам, локомотивов на железных дорогах. К 1880 году суммарная мощность всех работавших паровых машин превысила 26 млн кВт (35 млн л. с.).

Двигатель Стирлинга [ править | править код ]

В 1816 шотландец Роберт Стирлинг предложил двигатель внешнего сгорания, называемый сейчас его именем Двигатель Стирлинга. В этом двигателе рабочее тело (воздух или иной газ) заключен в герметичный объём. Здесь осуществлен цикл по типу цикла Севери («до-Уаттовского»), но нагрев рабочего тела и его охлаждение производятся в различных объёмах машины и сквозь стенки рабочих камер. Природа нагревателя и охладителя для цикла не имеют значения, а потому он может работать даже в космосе и от любого источника тепла. КПД созданных сейчас стирлингов невелик. Теоретически он должен раза в 2 превышать КПД для ДВС, а практически — это примерно одинаковые величины. Но у стирлингов есть ряд других преимуществ, которые способствовали развитию исследований в этом направлении.

Паровая турбина [ править | править код ]

Рисунки, изображающие крыльчатое колесо, вращающееся под воздействием потока пара, известны с древних времён. Однако практические конструкции паровой турбины были созданы лишь во второй половине XIX века, благодаря развитию конструкционных материалов, позволивших достичь высоких скоростей вращения.

В 1889 году шведский инженер Карл Густав де Лаваль предложил использовать расширяющееся сопло и быстроходную турбину (до 32000 об/мин), а, независимо от него, ещё в 1884 году англичанин Чарлз Алджернон Парсонс изобрёл первую пригодную для промышленного применения реактивную турбину (более тихоходную), способную вращать судовой винт. Паровые турбины стали применять на морских судах, а с начала XX века на электростанциях. В 1960-х годах их мощность превысила 1000 МВт в одном агрегате.

Двигатель внутреннего сгорания [ править | править код ]

Проект первого двигателя внутреннего сгорания (ДВС) принадлежит известному изобретателю часового анкера Христиану Гюйгенсу и предложен ещё в XVII веке. Интересно, что в качестве топлива предполагалось использовать порох, а сама идея была подсказана артиллерийским орудием. Все попытки Дени Папена (упомянутого выше, как создатель первой паровой машины) построить машину на таком принципе, успехом не увенчались. Первый надёжно работавший ДВС сконструировал в 1860 году французский инженер Этьен Ленуар. Двигатель Ленуара работал на газовом топливе. Спустя 16 лет немецкий конструктор Николас Отто создал более совершенный 4-тактный газовый двигатель. В этом же 1876 году шотландский инженер Дугальд Кларк испытал первый удачный 2-тактный двигатель. Совершенствованием ДВС занимались многие инженеры и механики. Так, в 1883 году немецкий инженер Карл Бенц изготовил использованный им в дальнейшем 2-тактный ДВС. В 1897 году его соотечественник и тоже инженер Рудольф Дизель предложил ДВС с воспламенением рабочей смеси в цилиндре от сжатия воздуха, названный впоследствии дизелем.

В XX веке ДВС стал основным двигателем в автомобильном транспорте. В 1970-х годах почти 80 % суммарной мощности всех существовавших ДВС приходилось на транспортные машины (автомобили, трактора и прочее). Параллельно шло совершенствование гидротурбин, применявшихся на гидроэлектростанциях. Их мощность в 1970-х годах превысила 600 МВт.

Читайте также:  Самодельный токарный патрон по металлу своими руками

В первой половине XX века создали новые типы первичных двигателей: газовые турбины, реактивные двигатели, а в 1950-х и ядерные силовые установки. Процесс совершенствования и изобретения первичных двигателей продолжается.

Вторичные двигатели [ править | править код ]

Электродвигатели [ править | править код ]

В 1834 году русский учёный Борис Семёнович Якоби (так писалось его имя в русской транскрипции) создал первый пригодный для практического использования электродвигатель постоянного тока.

В 1888 году сербский студент и будущий великий изобретатель Никола Тесла высказал принцип построения двухфазных двигателей переменного тока, а год спустя русский инженер Михаил Осипович Доливо-Добровольский создал первый в мире 3-фазный асинхронный электродвигатель, ставший наиболее распространённой электрической машиной.

Пневмодвигатели и гидромашины [ править | править код ]

Пневмодвигатели и гидромашины, соответственно, работают от сетей (баллонов) высокого давления воздуха или жидкости преобразуя гидравлическую (пневматическую) энергию насосов. Их широко применяют в качестве исполнительных механизмов в различных устройствах и системах. Так, созданы пневмолокомотивы (особенно пригодны для работ во взрывоопасных условиях, например в шахтах, где тепловые двигатели не применимы из-за температурных условий, а электрические — из-за искр при коммутации), с помощью гидромашин осуществляется привод гусениц в некоторых типах тракторов и танков, перемещение рабочих органов бульдозеров и экскаваторов. Всё разнообразнее конструкции экологически чистых городских автомобилях на пневмоприводах, предлагаемых инженерами разных стран. Вторичные двигатели играют большую роль в технике, однако их мощность относительно невелика. Их также широко применяют и в миниатюрных и сверхминиатюрных устройствах.

Классификации [ править | править код ]

По источнику энергии [ править | править код ]

Двигатели могут использовать следующие типы источников энергии:

По типам движения [ править | править код ]

Получаемую энергию двигатели могут преобразовывать к следующим типам движения:

  • вращательное движение твёрдых тел;
  • поступательное движение твёрдых тел;
  • возвратно-поступательное движение твёрдых тел;
  • движение реактивной струи;
  • другие виды движения.

Электродвигатели, обеспечивающие поступательное и/или возвратно-поступательное движение твёрдого тела;

  • линейные;
  • индукционные;
  • пьезоэлектрические.
  • ионные двигатели;
  • стационарные плазменные двигатели;
  • двигатели с анодным слоем;
  • радиоионизационные двигатели;
  • коллоидные двигатели;
  • электромагнитные двигатели и др.

По устройству [ править | править код ]

Двигатели внешнего сгорания — класс двигателей, где источник тепла или процесс сгорания топлива отделены от рабочего тела:

Двигатели внутреннего сгорания — класс двигателей, у которых образование рабочего тела и подвод к нему тепла объединены в одном процессе и происходят в одном технологическом объёме:

  • двигатели с герметично запираемыми рабочими камерами (поршневые и роторные ДВС);
  • двигатели с камерами, откуда рабочее тело имеет свободный выход в атмосферу (газовые турбины).

По типу движения главного рабочего органа ДВС с запираемыми рабочими камерами делятся на ДВС с возвратно-поступательным движением (поршневые) (делятся на тронковые и крецкопфные) и ДВС с вращательным движением (роторные), которые по видам вращательного движения делятся на 7 различных типов конструкций. По типу поджига рабочей смеси ДВС с герметично запираемыми камерами делятся на двигатели с принудительным электрическим поджиганием (калильным или искровым) и двигатели с зажиганием рабочей смеси от сжатия (дизель).

По типу смесеобразования ДВС делятся на: с внешним смесеобразованием (карбюраторные) и с непосредственным впрыском топлива в цилиндры или впускной коллектор (инжекторные). По типу применяемого топлива различают ДВС работающие на бензине, сжиженном или сжатом природном газе, на спирте (метаноле) и пр.

Реактивные двигатели [ править | править код ]

Ракетные двигатели [ править | править код ]

  • жидкостные ракетные двигатели;
  • твердотопливные ракетные двигатели;
  • ядерные ракетные двигатели;
  • некоторые типы электроракетных двигателей.

По применению [ править | править код ]

В связи с принципиально различными требованиями к двигателю в зависимости от его назначения, двигатели идентичные по принципу действия, могут называться «корабельными», «авиационными», «автомобильными» и тому подобными.

Категория «Двигатели» в патентоведении одна из наиболее активно пополняемых. В год по всему миру подаётся от 20 до 50 заявок в этом классе. Часть из них отличаются принципиальной новизной, часть — новым соотношением известных элементов. Новые же по конструкции двигатели появляются очень редко.

Производство [ править | править код ]

Переносные значения [ править | править код ]

Важность, первичность двигателя в технике привела к тому, что слово «двигатель» употребляется в переносном смысле во всех сферах деятельности человека (например, в экономике общеизвестно выражение «Реклама — двигатель торговли»)

В общем случае v образный двигатель – это обычный двигатель внутреннего сгорания (ДВС), цилиндры которого конструктивно расположены друг против друга под определенным углом. Как и любой другой мотор, он во многом определяет конструкцию автомобиля.

Немного истории

Впервые ДВС, имеющий практическое применение, был построен немецкими инженерами Г. Даймлером и В. Майбахом в 1883 году. Этот одноцилиндровый силовой агрегат объемом 462 куб. см. развивал мощность 1,1 л. с. Однако этой мощности было недостаточно и в дальнейшем ее наращивание осуществлялось путем увеличения рабочего объема цилиндра. Но этот процесс не мог продолжаться бесконечно, поэтому конструкторы начали постепенно увеличивать количество цилиндров.

Так появились рядные двух- четырех- шести- и даже восьмицилиндровые двигатели. Правда, увеличение количества установленных в один ряд цилиндров более 6-ти значительно увеличивало габаритные размеры подкапотного пространства автомобиля. Кроме большой длины рядные моторы имеют и другие недостатки, например:

  • большой вес;
  • ограничение мощности;
  • недостаточную сбалансированность и др.
Читайте также:  Шнек для ледобура своими руками

В настоящее время разработкой рядных силовых агрегатов занимаются все ведущие производители автомобилей. Связано это с тем, что они просты как в изготовлении, так и в процессе эксплуатации. Отличаются они и высокой ремонтопригодностью.

Понимая, что расположение цилиндров в один ряд – это временное решение, тот же В. Майбах в 1889 году изобрел и запатентовал v образный двигатель. Однако первые такие ДВС начали изготавливать только начиная с 1905 года, причем не в Германии, а в США и Франции.

Особенности конструкции

Конструктивно v образный двигатель значительно сложнее стандартного рядного мотора. Ведь они оснащаются двумя головками блока цилиндров (ГБЦ) и имеют более сложные механизмы газораспределения (ГРМ) и впрыска топлива.

Большое значение в конструкции v образных двигателей играет угол размещения цилиндров относительно друг друга. В процессе эволюции создавались различные конструкции, в которых углы развала цилиндров изменялись от 1 до 180 градусов.

В результате многочисленных экспериментов разработчики пришли к выводу, что наиболее оптимальными являются углы 45, 60 и 90 градусов. Именно эти углы развала цилиндров имеет большинство современных v образных силовых агрегатов.

Основным достоинством v образных моторов является их компактность. При этом, их несколько увеличенная ширина существенного значения на размеры подкапотного пространства автомобиля не оказывает.

Разные углы развала цилиндров используются в различных силовых агрегатах. Некоторые их конфигурации сбалансированы очень хорошо, другие требуют использования дополнительных механизмов. Так, например, v образные двигатели с оптимальным углом развала, такие как:

  1. v 16 – прекрасно уравновешены и обеспечивают равномерную работу всех цилиндров;
  2. v 12 (состоящий как-бы из 2-х шестицилиндровых силовых агрегатов) – независимо от угла развала цилиндров отлично уравновешен;
  3. v 10 и v 8 – требуют наличия противовесов на коленчатом валу;
  4. v 2, v 4, v 6 – отличаются повышенной вибрацией и требуют дополнительной балансировки.

Достоинства и недостатки

Широкое распространение v образные двигатели получили, в первую очередь, благодаря возможности получения максимального крутящего момента. Достигается это за счет того, что в отличие от рядного мотора (R двигатель), в котором силы, направленные на коленчатый вал, ориентированы перпендикулярно, в v образном силовом агрегате они действуют по касательной с двух сторон. При этом достигается максимальное ускорение коленчатого вала, так как инерция, создаваемая при работе, значительно выше той, которая используется в R-образных моторах.

Кроме того, v образный двигатель имеет большую жесткость коленчатого вала, что :

  • повышает прочность всей конструкции силового агрегата;
  • увеличивает срок службы мотора;
  • позволяет динамично работать как на низких, так и на высоких (предельных) оборотах.

Силовые агрегаты с v-образным расположением цилиндров не свободны от недостатков. Среди них отмечают:

  • высокую стоимость;
  • большой уровень вибраций;
  • сложности при балансировке и др.

Однако в настоящее время разработчики владеют соответствующими конструкторскими решениями и технологическими возможностями, позволяющими минимизировать влияние этих недостатков и улучшить ряд технических характеристик этих моторов.

Несмотря на то, что с момента изобретения v образных силовых агрегатов прошло более 100 лет, их потенциал полностью еще не раскрыт. Будущее автомобилестроения несомненно связано именно с этими моторами. Поэтому в этом направлении и работают сейчас многочисленные коллективы разработчиков, стараясь, чтобы их производство стало более технологичным и менее затратным.

Перспективные разработки

Наиболее распространенным среди v образных силовых агрегатов является двигатель v6.

Однако именно он отличается высоким уровнем вибраций и требует достаточно трудоемкой балансировки. В настоящее время существует несколько направлений, в которых эволюционируют двигатели v 6:

  • Оппозитные силовые агрегаты

Оппозитный мотор – это v образный мотор, у которого угол развала цилиндров составляет 180 градусов. Такая конструкция позволяет значительно снизить центр тяжести и, что особенно важно, взаимно нейтрализовать вибрацию поршней, сделав рабочие характеристики мотора более плавными. Лидером этого направления моторостроения является компания Fuji Heavy Indastries Ltd., которая уже много лет разрабатывает такие двигатели для автомобилей марки Subaru. Оппозитная компоновка позволяет придать блоку цилиндров очень высокую прочность и жесткость, однако значительно усложняет ремонт мотора.

Для справки: оппозитные силовые агрегаты устанавливаются практически на все автомобили Subaru начиная с 1963 года.

  • VR образные моторы

Разработка VR образных силовых агрегатов – еще одно направление, по которому развиваются v-образные двигатели. Конструктивно такие моторы представляют собой симбиоз v образного и рядного силового агрегата и отличаются от обычныхŸ малым углом развала цилиндров (15 градусов) иŸ наличием одной ГБЦ, которая накрывает оба ряда цилиндров.

Такая компоновка позволяет получить компактный силовой агрегат, который меньше по длине, чем рядный 6-ти цилиндровый мотор и ширине, чем обычный двигатель v6.

Для справки: моторы VR 6 устанавливались на автомобили компании Volkswagen (Passat, Golf, Sharan и др.). Они имели заводские обозначения ААА (объем 2,8 л., мощность 174 л. с.) и ABV (объем 2,9 л., мощность 192 л. с.).

Отправить ответ

  Подписаться  
Уведомление о
Adblock
detector