Цифровой осциллограф принцип работы

Содержание:

Для любого профессионального настройщика электронных устройств или для инженера по радиоэлектронным устройствам основным рабочим устройством является осциллограф. Без него нельзя обойтись при настройке телевизора, передатчика. Осциллографы служат для контроля и наблюдения за периодическими сигналами различных форм, в том числе синусоидальной. Благодаря широкому интервалу развертки он дает возможность развернуть импульс даже для контроля наносекундных промежутков времени. Осциллограф подобен работе телевизора, который изображает электрические сигналы.

Устройство и принцип действия

Для лучшего понимания действия прибора, разберем блок-схему типового осциллографа, так как все их основные виды имеют аналогичное устройство.

На этой схеме не изображены блоки питания: низковольтный блок, подающий питание для работы узлов, и источник повышенного напряжения, применяющийся для генерирования высокого напряжения, приходящего на электронно-лучевую трубку. Также на схеме нет калибратора для настройки и подготовки прибора к работе.

Тестируемый сигнал поступает на канал вертикального отклонения «Y», далее на аттенюатор, выполненный в виде многопозиционного переключателя, настраивающего чувствительность осциллографа. Его шкала размечена в вольтах на сантиметр или в вольтах на одно деление. Это обозначает одно деление сетки координат на экране лучевой трубки. Там же изображены сами величины. Если амплитуда сигнала неизвестна, то устанавливается наименьшая чувствительность. В этом случае даже большой сигнал на 300 В не повредит прибору.

Обычно в комплекте с осциллографом есть делители , в виде специальных насадок с разъемами. Они работают так же, как аттенюатор. Эти насадки компенсируют емкость кабеля при работе с малыми импульсами. На фото показан делитель. Коэффициент деления равен 1:10.

С помощью делителя возможности прибора расширяются, можно исследовать сигналы в несколько сотен вольт. После делителя сигнал проходит на предварительный усилитель , раздваивается и приходит на переключатель синхронизации и линию задержки , которая служит для компенсации времени сработки генератора развертки. Оконечный усилитель создает напряжение, поступающее на «Y» -пластины, и отклоняет луч в вертикальной плоскости.

Генератор развертки создает пилообразное напряжение, поступающее на пластины «Х» и горизонтальный усилитель, при этом луч отклоняется в горизонтальной плоскости.

Устройство синхронизации создает условия для работы генератора развертки в одно время с появлением сигнала. В итоге на дисплей осциллографа выводится изображение импульса.

Переключатель синхронизации работает в положениях синхронизации от:
  • Исследуемого сигнала.
  • Сети.
  • Внешнего источника.

Первое положение применяется чаще, так как оно более удобно.

Классификация

Осциллографы являются распространенным видом измерительных приборов. Существует несколько видов осциллографов, имеющих разные характеристики, устройство и работу.

Аналоговые осциллографы

Такие осциллографы являются классическими моделями этого типа измерительных приборов. Любые аналоговые осциллографы имеют делитель, вертикальный усилитель, синхронизацию и отклонение, блок питания и лучевую трубку.

Такие трубки имеют больший диапазон частоты. Отклонение луча на экране прямо зависит от напряжения пластин. Горизонтальная развертка работает по линейной зависимости от напряжения горизонтальных пластин.

Нижний предел частоты равен 10 герцам. Верхняя граница определяется емкостью пластин и усилителем. Сегодня аналоговые устройства вытесняются цифровыми приборами со своими достоинствами. Но аналоговые приборы пока не исчезают ввиду их малой стоимости.

Цифровые запоминающие

Если цифровые приборы сравнивать с аналоговыми, у них больше возможностей. Стоимость их постепенно снижается. Цифровой осциллограф включает в себя делитель, усилитель, преобразователь аналогового сигнала, памяти, блока управления и выведения на ЖК панель.

Принцип действия такого вида осциллографов придает им большие возможности. Входящий аналоговый сигнал модифицируется в цифровую форму, и сохраняется. Скорость сохранения определяется управляющим устройством. Ее верхняя граница задается скоростью преобразователя, а нижняя граница не имеет ограничений.

Преобразование сигнала в цифровой код дает возможность увеличить устойчивость отображения, сохранять данные в память, сделать растяжку и масштаб проще. Применение дисплея вместо электронной трубки позволяет отображать любые данные и осуществлять управление прибором. Дорогостоящие приборы оснащаются цветным экраном, что позволяет различать сигналы других каналов, курсоры, выделять цветом разные места.

Параметры цифровых осциллографов намного выше аналоговых моделей, в больших пределах находится растяжка сигнала. Кроме простых схем включения синхронизации, может использоваться синхронизация при некоторых событиях или параметрах сигнала. Синхронизацию можно увидеть непосредственно перед включением развертки.

Применяемые процессоры обработки сигнала дают возможность обработки спектра сигнала с помощью анализа преобразованием Фурье. Информация в цифровом виде позволяет записать в память экран с итогами измерения, а также распечатать на принтере. Многие приборы оснащены накопителями для записи изображения в архив и последующей обработки.

Цифровые люминофорные

Такой тип осциллографов работает на новой структуре построения, основанной на цифровом люминофоре. Он имитирует по подобию с аналоговыми приборами изменение изображения на экране. Люминофорные цифровые типы осциллографов дают возможность наблюдать на дисплее все подробности модулированных сигналов, как и аналоговые типы. При этом обеспечивается их анализ и хранение в памяти.

Люминофорные приборы, как и предыдущая рассмотренная модель, имеет свою память для хранения различной информации, в том числе хранится разница задержки времени между разными пробниками. Возможность люминофорных осциллографов выводить данные с изменяемой интенсивностью значительным образом упрощает поиск повреждений в импульсных блоках. Это выражено при вычислении глубины модуляции сигнала при регулировке напряжения на выходе, приводящее к нестабильному функционированию блоков.

В люминофорных цифровых осциллографах объединены достоинства цифровых и аналоговых устройств, а во многом превосходят их. Люминофорные приборы обладают всеми преимуществами запоминающих осциллографов, обеспечивая возможности аналоговых приборов: быструю реакцию на смену сигнала и его отображение с разной яркостью.

Цифровые стробоскопические

В этом виде осциллографов применяется эффект последовательного стробирования сигнала. При повторении сигнала выбирается мгновенное значение в определенной точке. При поступлении нового сигнала точка выбора смещается по сигналу. Так продолжается до полного стробирования сигнала. Модифицированный таким образом сигнал в виде огибающей линии мгновенных величин сигнала входа, повторяет форму сигнала.

Продолжительность модифицированного сигнала на много больше продолжительности тестируемого сигнала, а значит, имеется сжатие спектра. Это соответствует увеличению полосы пропускания. Стробоскопические виды осциллографов имеют большие полосы пропускания, и дают возможность производить исследования периодических сигналов с наименьшей продолжительностью. Стоимость стробоскопических осциллографов очень высока, поэтому их применяют чаще всего для сложных задач.

Виртуальные осциллографы

Новый вид приборов может быть отдельным устройством с параллельным портом для вывода или ввода информации, а также с портом USB, а также встроенным вспомогательным прибором на базе карт ISA. Программная оболочка виртуальных осциллографов позволяет полностью управлять устройством, и имеет несколько возможностей сервиса: импорт и экспорт информации, цифровая фильтрация, разнообразные измерения, обработка информации математическим способом и т.д.

Осциллографы с применением персонального компьютера могут применяться для широких возможностей измерения. Например, для обслуживания и разработки радиотехнической и электронной аппаратуры, в телекоммуникационной связи, при изготовлении компьютеризированного оборудования, при выполнении диагностических мероприятий средств автотранспорта на станциях технического обслуживания и для многих других случаев, где требуется оценка и тестирование неустойчивых переходных процессов.

Виртуальные модели осциллографов являются хорошим альтернативным вариантом для стандартных запоминающих цифровых осциллографов, так как они обладают достоинствами в виде малой стоимости, простоте применения, компактных размеров и высокого быстродействия. К недостаткам виртуальных осциллографов относится невозможность измерения и отображения постоянной величины сигналов.

Читайте также:  Дистанционное пополнение карты тройка
Портативные осциллографы

Цифровые технологии быстро развиваются, в результате чего цифровые стационарные приборы модифицируют в портативные устройства с хорошими параметрами габаритных размеров и массы, а также низким расходом электрической энергии.

При этом портативные осциллографы с питанием от гальванических элементов не уступают по характеристикам стационарным приборам по количеству функций, имеют большие возможности использования в разных областях научных исследований, промышленном производстве.

Осцилло́граф (лат. oscillo — качаюсь + греч. γραφω — пишу) — прибор, предназначенный для исследования (наблюдения, записи, измерения) амплитудных и временны́х параметров электрического сигнала, подаваемого на его вход, и наглядно отображаемого (визуализации) непосредственно на экране, либо регистрируемого на фотоленту.

Современные осциллографы позволяют исследовать сигнал гигагерцовых частот. Для исследования более высокочастотных сигналов можно использовать электронно-оптические камеры.

Содержание

Классификация [ править | править код ]

По логике работы и назначению осциллографы можно разделить на три группы [1] :

  • реального времени (аналоговый)
  • запоминающий осциллограф (storage oscilloscope)
  • аналоговый (например, с запоминающим устройством на ЭЛТ)
  • цифровой (DSO — digital storage oscilloscope)
  • стробирующий осциллограф (sampling oscilloscope)
  • Осциллографы с непрерывной развёрткой для регистрации кривой на фотоленте (шлейфовый осциллограф).

    По количеству лучей: однолучевые, двулучевые и т. д. Количество лучей может достигать 16 и более (n-лучевой осциллограф имеет n сигнальных входов и может одновременно отображать на экране n графиков входных сигналов).

    Осциллографы с периодической развёрткой делятся на: универсальные (обычные), скоростные, стробоскопические, запоминающие и специальные; цифровые осциллографы могут сочетать возможность использования разных функций.

    Также существуют осциллографы, совмещенные с другими измерительными приборами (напр. мультиметром). Такие приборы называются скопметрами.

    Осциллограф также может существовать не только в качестве автономного прибора, но и в виде приставки к компьютеру: в виде карты расширения, или подключаемой через какой-либо внешний порт.

    Устройство [ править | править код ]

    Осциллограф с дисплеем на базе ЭЛТ состоит из следующих основных частей:

    • Осциллографическая электронно-лучевая трубка;
    • Блок горизонтальной развёртки. Генерирует периодический или однократный сигнал пилообразной формы (линейно нарастающий и быстро спадающий), который подаётся на пластины горизонтального отклонения ЭЛТ. Во время спадающей фазы (обратный ход луча) также формируется импульс гашения электронного луча, который подаётся на модулятор ЭЛТ;
    • Входной усилитель исследуемого сигнала, выход которого подключён к пластинам вертикального отклонения ЭЛТ.

    Также содержатся вспомогательные блоки: блок управления яркости, калибратор длительности, калибратор амплитуды.

    В цифровых осциллографах чаще всего используются ЖК-дисплеи.

    Экран [ править | править код ]

    Осциллограф имеет экран A, на котором отображаются графики входных сигналов. У цифровых осциллографов изображение выводится на дисплей (монохромный или цветной) в виде готовой картинки, у аналоговых осциллографов в качестве экрана используется осциллографическая электронно-лучевая трубка с электростатическим отклонением. На экран обычно нанесена разметка в виде координатной сетки.

    Сигнальные входы [ править | править код ]

    Осциллографы разделяются на одноканальные и многоканальные (2, 4, 6, и т. д. каналов на входе). Многоканальные осциллографы позволяют одновременно наблюдать на экране несколько сигналов, измерять их параметры и сравнивать их между собой.

    Входной сигнал каждого канала подаётся на свой вход «Y» и усиливается своим усилителем вертикального отклонения до уровня, необходимого для работы отклоняющей системы ЭЛТ (десятки вольт) или аналого-цифрового преобразователя. Усилитель вертикального отклонения всегда строится по схеме усилителя постоянного тока (УПТ), то есть имеет нижнюю рабочую частоту 0 Гц. Это позволяет измерять постоянную составляющую сигнала, правильно отображать несимметричные сигналы относительно нулевой линии, измерять постоянное напряжение. Такой режим работы называется — режим с открытым входом.

    Однако, если необходимо отсечь постоянную составляющую (например, она слишком велика и уводит луч за границы экрана), усилитель можно переключить в режим с закрытым входом (входной сигнал подаётся на УПТ через разделительный конденсатор).

    Управление развёрткой [ править | править код ]

    В большинстве осциллографов используются два основных режима развёртки:

    • автоматический (автоколебательный);
    • ждущий.

    В некоторых моделях предусмотрен ещё один режим:

    • однократный.

    Автоматическая развёртка

    При автоматической развёртке генератор развёртки работает в автоколебательном режиме, поэтому, даже в отсутствие сигнала, по окончании цикла развёртки — цикла генератора пилообразного напряжения развёртки происходит её очередной запуск, это позволяет наблюдать на экране изображение даже в отсутствии сигнала или при подаче на вход вертикального отклонения постоянного напряжения. В этом режиме у многих моделей осциллографов выполнен захват частоты генератора развёртки исследуемым сигналом, при этом частота генератора развёртки в целое число раз ниже частоты исследуемого сигнала.

    Ждущий режим развёртки

    В ждущем режиме развёртки напротив, при отсутствии сигнала или его недостаточном уровне (либо при неверно настроенном режиме синхронизации) развёртка отсутствует и экран гаснет. Развёртка запускается при достижении сигналом некоторого настроенного оператором уровня, причем можно настроить запуск развёртки как по нарастающему фронту сигнала, так и по падающему. При исследовании импульсных процессов, даже если они непериодические (например, непериодическое, достаточно редкое ударное возбуждение колебательного контура) ждущий режим обеспечивает зрительную неподвижность изображения на экране.

    В ждущем режиме развёртку часто запускают не по самому исследуемому сигналу, а некоторым синхронным, обычно опережающим сам исследуемый процесс сигналом, например, сигналом импульсного генератора, возбуждающего процесс в исследуемой схеме. В этом случае, запускающий сигнал подаётся на вспомогательный вход осциллографа — вход запуска развёртки — вход синхронизации.

    При однократном режиме генератор развёртки «взводится» внешним воздействием, например, нажатием кнопки и далее ожидает запуска точно также, как и в ждущем режиме. После запуска развёртка производится только один раз, для повторного запуска генератор развёртки необходимо «взвести» снова. Этот режим удобен для исследования непериодических процессов, таких как логические сигналы в цифровых схемах, чтобы последующие запуски развёртки по фронтам сигнала не «замусоривали» экран.

    Недостаток такого режима развёртки — светящееся пятно по экрану пробегает однократно. Это затрудняет наблюдение при быстрых развёртках, так как яркость изображения в этом случае мала. Обычно в этих случаях применяют фотографирование экрана. Необходимость фотографирования на фотоплёнку ранее устраняли применением осциллографических трубок с запоминанием изображения, в современных цифровых осциллографах запоминание процесса производится в цифровом виде в цифровой памяти (ОЗУ) осциллографа.

    Синхронизация развёртки с исследуемым сигналом [ править | править код ]

    Для получения неподвижного изображения на экране каждые последующие траектории движения луча по экрану в циклах развёртки должны пробегать по одной и той же кривой. Это обеспечивает схема синхронизации развёртки, запускающая развёртку на одном и том же уровне и фронте исследуемого сигнала.

    Пример. Допустим, исследуется синусоидальный сигнал и схема синхронизации настроена так, чтобы запускать развёртку при нарастании синусоиды, когда её значение равно нулю. После запуска луч отрисовывает одну или несколько, в зависимости от настроенной скорости развёртки, волн синусоиды. После окончания развёртки схема синхронизации не запускает развёртку повторно, как в автоматическом режиме, а дожидается очередного прохождения синусоидой волны нулевого значения на нарастающем фронте. Очевидно, что последующее прохождение луча по экрану повторит траекторию предыдущего. При частотах повторения развёртки свыше 20 Гц, из-за инерционности зрения будет видна неподвижная картина.

    Если запуск развёртки не синхронизирован с наблюдаемым сигналом, то изображение на экране будет выглядеть «бегущим» или даже совершенно размазанным. Это происходит потому, что в этом случае, отображаются различные участки наблюдаемого сигнала на одном и том же экране.

    Для получения стабильного изображения все осциллографы содержат систему, называемую схемой синхронизации, которую в зарубежной литературе, не совсем корректно, часто называют триггером.

    Назначение схемы синхронизации — задерживать запуск развёртки до тех пор, пока не произойдёт некоторое событие. В примере, событием было прохождение синусоиды через нуль на нарастающем фронте.

    Поэтому, схема синхронизации имеет как минимум две настройки, доступные оператору:

    • Уровень запуска: задаёт напряжение исследуемого сигнала, при достижении которого запускается развёртка.
    • Тип запуска: по фронту или по спаду.
    Читайте также:  Наименование операций в технологическом процессе

    Правильная настройка этих органов управления обеспечивает запуск развёртки всегда в одном и том же месте сигнала, поэтому изображение сигнала на осциллограмме выглядит стабильным и неподвижным.

    Во многих моделях осциллографов имеется ещё один орган управления схемой синхронизации, ручка плавной регулировки «СТАБИЛЬНОСТЬ», изменением её положения изменяют время нечувствительности генератора развёртки к запускающему событию («мертвое время» генератора развёртки). В одном крайнем положении генератор развёртки переводится в автоколебательный режим, в другом крайнем положении — в ждущий режим, в промежуточных положениях изменяет частоту запуска развёртки. Обычно в осциллографах, снабжённых этой регулировкой, отсутствует переключатель режима развёртки «ЖДУЩИЙ/АВТОМАТИЧЕСКИЙ»

    Как было сказано, почти всегда предусмотрен дополнительный вход синхронизации развёртки, при этом имеется переключатель запуска развёртки «ВНЕШНИЙ/ВНУТРЕННИЙ», при положении «ВНЕШНИЙ» на вход схемы синхронизации развёртки подаётся не сам исследуемый сигнал, а напряжение со входа синхронизации.

    Часто имеется переключатель на синхронизацию от питающей сети (в европейских странах и России — 50 Гц, в некоторых других странах — 60 Гц), при синхронизации от сети на вход схемы синхронизации подаётся напряжение с частотой сети. Такая синхронизация удобна для наблюдения сигналов с частотой сети, или сигналов кратных этой частоте, например, сетевых помех, измерении параметров сетевых фильтров, выпрямителей и др.

    В специализированных осциллографах имеются и особые режимы синхронизации, например, режим запуска развёртки в момент начала заданной оператором номером строки в кадре телевизионного сигнала, что удобно при измерении параметров телевизионного тракта и отдельных его каскадов в системах телевидения.

    В других специализированных осциллографах, применяемых при исследовании цифровых (например, микропроцессорных) устройств, схема синхронизации дополняется компаратором кодов и запуск развёртки производится при совпадении заданного оператором двоичного кода (слова) с кодом на шине, например, адреса. Это удобно для поиска причины сбоев при записи/чтении некоторой ячейки памяти и других диагностик.

    Применение [ править | править код ]

    Один из важнейших приборов в радиоэлектронике. Используются в прикладных, лабораторных и научно-исследовательских целях, для контроля/изучения и измерения параметров электрических сигналов — как непосредственно, так и получаемых при воздействии различных устройств/сред на датчики, преобразующие эти воздействия в электрический сигнал или радиоволны.

    Наблюдение фигур Лиссажу [ править | править код ]

    В осциллографах есть режим, при котором на пластины горизонтального отклонения подаётся не пилообразное напряжение развёртки, а произвольный сигнал, подаваемый на специальный вход (вход «Х»). Если подать на входы «X» и «Y» осциллографа сигналы близких частот, то на экране можно увидеть фигуры Лиссажу. Этот метод широко используется для сравнения частот двух источников сигналов и для подстройки одного источника под частоту другого.

    Курсорные измерения [ править | править код ]

    В современных аналоговых и цифровых осциллографах часто имеется вспомогательная сервисная система, позволяющая удобно измерить некоторые параметры исследуемого осциллографом сигнала. В таких осциллографах на экран наблюдения исследуемого сигнала дополнительно выводятся изображения курсоров в виде горизонтальных или вертикальных прямых, либо в виде взаимноперпендикулярных прямых линий.

    Координаты курсорных линий по амплитуде и времени отображаются в десятичном цифровом виде, обычно на экране осциллографа, либо на дополнительных цифровых индикаторах.

    Оператор с помощью органов управления положением курсоров имеет возможность навести курсор на интересующую его точку изображения сигнала, при этом курсорная система непрерывно показывает в цифровом виде координаты этой точки, — уровня напряжения или момента времени по оси времени и оси амплитуды.

    Во многих осциллографах имеется несколько экземпляров курсоров, при этом на цифровые индикаторы можно выводить разность значений курсорных засечек между парой засечек по вертикали и промежутка времени между парой курсорных засечек по горизонтали. Практически во всех типах таких осциллографах автоматически в цифровом виде на индикаторы выводится величина, обратная промежутку времени между курсорными засечками, что сразу даёт частоту исследуемого периодического сигнала при наведении курсоров по оси времени на соседние фронты сигнала.

    В некоторых осциллографах предусмотрен режим автоматического позиционирования курсоров на пики сигнала, что в большинстве случаев и является целью амплитудных измерений. Таким образом, курсорные измерения позволяют упростить измерения параметров сигналов человеком, избавляя его от необходимости зрительно считывать число клеток разметки шкалы осциллографического экрана и производить умножение полученных таким образом данных на значения цены деления по вертикали и горизонтали.

    Математические функции [ править | править код ]

    В некоторых многоканальных осциллографах присутствует возможность производить математические функции над измеряемыми разными каналами сигналами и выводить результирующий сигнал вместо или в дополнении к измеряемым исходным сигналам. Наиболее часто присутствуют функции сложения, вычитания, умножения, деления. Это позволяет, например, вычесть из исследуемого сигнала канала №1 сигнал синхронизации поступающий на канал №2, освобождая, таким образом, исследуемый сигнал от сигналов синхронизации. Или, например, возможно проверить добротность блока аналогового усиления сигнала, вычитая из выходного сигнала входной сигнал. В некоторых современных цифровых осциллографах присутствуют такие математические функции как интегрирование, дифференцирование, извлечение квадратного корня [ источник не указан 311 дней ] .

    Захват строки телевизионного сигнала [ править | править код ]

    В современных цифровых осциллографах, а также в некоторых специализированных осциллографах на основе электронно-лучевой трубки, присутствует особый режим синхронизации — телевизионный. Этот режим позволяет отобразить одну или несколько заданных телевизионных строк из комплексного видеосигнала. В отличии от обычного осциллографа, блок синхронизации которого может стабильно показать только первую за синхроимпульсом строку, на специализированных осциллографах возможно наблюдать любую часть телевизионной картинки. Такие осциллографы обычно применяются на телевизионных и кабельных студиях и позволяют контролировать технические параметры передающей и записывающей аппаратуры.

    Настройка [ править | править код ]

    Современные осциллографы не требуют какой-либо настройки перед использованием, но, тем не менее, в большинстве осциллографов встроен прибор калибровки (Калибратор). Назначение этого прибора — формировать контрольный сигнал с заведомо известными и стабильными параметрами. Обычно такой сигнал имеет форму прямоугольных импульсов с амплитудой 1 Вольт, частотой 1кГц и скважностью 50% (параметры обычно указаны рядом с выходом сигнала калибратора). В любой момент пользователь осциллографа может подключить измерительный щуп прибора к выходу калибратора, и убедиться, что на экране осциллографа виден сигнал с указанными параметрами. В случае, если сигнал отличается от указанного на калибраторе, что скорее характерно для аналоговых осциллографов, то с помощью подстроечной отвертки пользователь может скорректировать входные характеристики щупа или усилители осциллографа таким образом, чтобы сигнал соответствовал данным калибратора. Стоит отметить, что современные цифровые осциллографы не имеют подстроечных элементов по причине использования цифровой обработки сигнала, но имеют автоматическую настройку по калибратору, когда через меню осциллографа вызывается специальная утилита, которая вносит поправочные коэффициенты в математический блок осциллографа и тем самым настраивает осциллограф на корректное отображение сигналов.

    История [ править | править код ]

    Электрический колебательный процесс изначально фиксировался вручную на бумаге. Первые попытки автоматизировать запись были предприняты Жюлем Франсуа Жубером в 1880 году, который предложил пошаговый полуавтоматический метод регистрации сигнала [2] . Развитием метода Жубера стал полностью автоматический ондограф Госпиталье [3] . В 1885 году русский физик Роберт Колли создал осциллометр, а в 1893 году французский физик Андре Блондель изобрел магнитоэлектрический осциллоскоп с бифилярным подвесом [4] .

    Подвижные регистрирующие части первых осциллографов обладали большой инерцией и не позволяли фиксировать быстротечные процессы. Этот недостаток был устранён в 1897 году [5] Уильямом Дадделлом, который создал светолучевой осциллограф, использовав в качестве измерительного элемента небольшое лёгкое зеркальце. Запись производилась на светочувствительную пластину [6] . Вершиной развития этого метода стали в середине XX века многоканальные ленточные осциллографы.

    Практически одновременно с Дадделлом Карл Фердинанд Браун использовал для отображения сигнала изобретённый им кинескоп [7] . В 1899 году устройство было доработано Йонатаном Зеннеком, добавившим горизонтальную развертку, что сделало его похожим на современные осциллографы. Кинескоп Брауна в 1930-е годы заменил кинескоп Зворыкина, что сделало устройства на его основе более надёжными [8] .

    Читайте также:  Резьба по фанере ручным лобзиком

    В конце XX века на смену аналоговым устройствам пришли цифровые. Благодаря развитию электроники и появлению быстрых аналого-цифровых преобразователей, к 1980-м годам они заняли доминирующую позицию среди осциллографов.

    Осциллограф – электронный прибор для измерения электрических сигналов в цепи и наблюдения за ними. Определение формы и параметров колебаний необходимо для отслеживания корректности работы оборудования.

    Первые попытки создать прибор для определения электрических колебаний относятся ещё к 1880 году. Их делали французские и русские физики. Первые осциллографы были аналоговыми. С 1980-х годов сигналы стали фиксироваться с помощью цифрового оборудования.

    Устройство и принцип действия прибора

    Объясним устройство аналогового осциллографа просто, «для чайников». Прибор состоит из следующих элементов:

    • лучевая трубка;
    • блок питания;
    • канал вертикального / горизонтального отклонения;
    • канал модуляции луча;
    • устройство синхронизации и запуска развёртки.

    Для управления параметрами сигнала и его отображения на экране есть регуляторы. У старых моделей экрана не было. Изображение фиксировалось на фотоленте.

    Принцип работы

    При запуске прибора сигнал подаётся на вход канала вертикального отклонения. Он имеет высокое входное сопротивление. По тому же принципу работает вольтметр, измеряющий напряжение. Однако вольтметр не показывает временного графика колебаний напряжения.

    Сигнал усиливается до необходимого уровня после подачи на вход. Он отображается на экране по вертикальной оси. Усиление требуется для работы отклоняющей системы лучевой трубки или преобразователя сигнала из аналогового в цифровой. Оно позволяет менять масштаб отображения колебаний на экране от крупного до мелкого.

    Устройство

    Лучевая трубка чувствительна к электрическим импульсам. Чем ниже их частота, тем выше чувствительность. В нынешних трубках количество лучей может составлять от одного до 16. Их количеству соответствует число сигнальных входов и отображающихся одновременно графиков.

    Особенность цифрового осциллографа в том, что он имеет экран и преобразователь аналогового сигнала. У него есть память для сохранения данных о полученном графике колебаний. Часть информации анализируется в автоматическом режиме и отображается в обработанном виде. Аналоговый осциллограф не запоминает данные, а только показывает их в реальном времени.

    Разверткой называется траектория движения луча, который улавливает колебания и выводит изображение на экран. Она бывает разной формы — эллиптической, круговой. Значение развёртки регулируется в зависимости от исследуемого сигнала по горизонтальной оси (временнóй).

    Блок питания подаёт напряжение от сети 220 В на электронные схемы. Есть и аккумуляторные модели, способные работать автономно.

    Виды осциллографов

    По принципу действия осциллографы бывают цифровыми и аналоговыми. Существуют смешанные аналого-цифровые приборы. Всё чаще выпускают виртуальные. Там в качестве экрана используется другой прибор – монитор компьютера, телевизора.

    Работа некоторых моделей основана на электромеханическом принципе:

    • электродинамический;
    • электростатический;
    • выпрямительный;
    • электромагнитный;
    • магнитоэлектрический;
    • термоэлектрический.

    Прибор может работать самостоятельно или являться приставкой к другому оборудованию (например, компьютеру). Во втором случае цена ниже, но сам прибор зависим от внешнего устройства.

    Виды развёрток

    В разных режимах работы осциллографа линейные (создаваемых пилообразным напряжением) развёртки могут различаться:

    • Однократная. Генератор запускается один раз, затем блокируется. Такая развёртка нужна для фиксирования неповторяющихся сигналов.
    • Ждущая. Запуск происходит сразу после сигнала. Нужна для наблюдения за редкими колебаниями.
    • Автоколебательная. Генератор периодически включается при отсутствии сигнала. Удобна для отображения частых периодических импульсов.

    Измеряемые процессы

    По принципу работы приборы делят на:

    • Специальные. Имеют блоки для целевого использования (например, телевизионные осциллографы).
    • Стробоскопические. Чувствительные приборы для исследования кратковременных повторяющихся процессов.
    • Скоростные. Используют для фиксации процессов с высокой скоростью (с точностью до нано- и пикосекунд).
    • Запоминающие. Сохраняют полученное изображение. Обычно применяют для изучения редких однократных действий.
    • Универсальные. Исследуют разные процессы.

    Где применяют осциллографы?

    Информация, которую даёт осциллограф:

    • значения напряжения, временные параметры колебаний;
    • сдвиг фаз, искажение импульса на разных участках цепи;
    • частота (определяется путем фиксирования его временных характеристик);
    • переменная и постоянная составляющие колебаний;
    • процессы в цепи.

    Осциллографы используют как в практических, так и в научно-исследовательских целях. Для простых измерений можно воспользоваться мультиметром, но в большинстве случаев осциллограф незаменим.

    Приборы для измерения колебаний применяют при настройке электронного оборудования. К примеру, для регулировки телевизионного сигнала необходимо получить его осциллографическое изображение. Приборы также используются при ремонте блоков питания, диагностике печатных плат.

    При ремонте автомобилей устройство поможет получить данные о положении коленчатого и распределительного валов, датчиков положения. Данные осциллограммы расскажут о наличии импульса на катушке, укажут на неисправность свечей и проводов, диодного моста генератора.

    Медицинское оборудование (кардиографы, энцефалографы) тоже работает по принципу осциллографирования. Только электрические колебания, измеряемые ими, происходят в живых организмах.

    Методика измерений

    Осциллограф измеряет электрическое напряжение и формирует амплитудный график электрических колебаний. Цифровые приборы могут запоминать полученный график, возвращаться к нему.

    Колебания отображаются на экране в двухмерной системе координат (напряжение – вертикальная ось, время – горизонтальная ось), формируя график — осциллограмму. Есть ещё третий компонент исследований – интенсивность сигнала (или яркость).

    При отсутствии входных импульсов на экране горизонтальная линия – «нулевая», обозначающая отсутствие напряжения. Как только на вход (или входы) прибора подаётся напряжение, на экране становятся видны один или несколько графиков одновременно (зависит от количества измеряемых сигналов).

    График электрических колебаний по форме может представлять собой:

    • синусоиду;
    • затухающую синусоиду;
    • прямоугольник;
    • меандр;
    • треугольники;
    • пилообразные колебания;
    • импульс;
    • перепад;
    • комплексный сигнал.

    Для получения стабильного графика колебаний в приборе стоит блок синхронизации. Получить цикличное отображение колебаний можно только после установки значения синхронизации. Оно принимается за «стартовое», служит отправной точкой графика. Все скачки отображаются по отношению к этой точке.

    Как выбрать

    Нужно представлять, в каких целях и как часто будет использоваться прибор, для изучения каких сигналов он предназначен. Учитывайте количество точек для одновременного измерения, одиночность или периодичность колебаний. Иногда используются устройства советского производства. Но получить точную настройку с их помощью трудно.

    Количество каналов

    По количеству каналов осциллографы могут быть одноканальными, простыми (2-4 канала), продвинутыми (до 16 каналов). Несколько каналов позволяют одновременно анализировать поступающие сигналы.

    Тип питания

    Прибор с аккумулятором можно брать с собой на выезд. Это удобно для мастеров, которые проверяют оборудование по месту его нахождения. Если выезды не производятся, лучше брать работающий от сети осциллограф, поскольку он стабильнее и надёжнее.

    Частота дискретизации

    Частота дискретизации важна для измерения однократных и переходных процессов. Чем выше этот параметр, тем более точное изображение сигнала на экране удастся получить.

    Полоса пропускания

    Для простых исследований цифровых схем и усилителей оптимальная звуковая частота — 25 МГц. Для профессионального измерения нужен прибор, у которого этот параметр — до 200 или даже до 500 МГц. Современные линии связи работают на очень высоких частотах. Частота исследуемых сигналов должна быть в 3-5 раз меньше величины полосы пропускания.

    Настройка осциллографа

    Перед использованием нового устройства проводится его калибровка с помощью находящихся на корпусе генератора прямоугольных импульсов. Сигнальный щуп подключают к калибровочному выходу, при этом на экране появляется «пила» — зигзагообразная линия. Нужно проверить работу всех функций и регуляторов.

    Сейчас осциллографы регулярно используют в сфере электроники. Есть большой выбор устройств, позволяющих наблюдать за параметрами электрических колебаний. Без осциллографа не обойтись ни инженеру-профи, ни рядовому любителю радиоэлектроники.

    Отправить ответ

      Подписаться  
    Уведомление о
    Adblock
    detector