Диаграмма состояния железо углерод кратко

При изучении структуры чугуна и стали строят диаграммы состояния — графические изображения, дающие наглядное представление о кристаллизации и превращениях, совершающихся при их нагреве и охлаждении.

Процесс кристаллизации зависит от того, какие фазы образуются из жидкого раствора сплава.

Фазой называют однородную часть системы, отделенную от других частей поверхностью раздела. Фазы делятся на твердые, жидкие и газообразные. Фазами могут быть чистые элементы, химические соединения, твердые и жидкие растворы и пары. Природа образующихся фаз определяет вид диаграммы состояния. Процесс кристаллизации подчиняется правилу фаз, которое показывает, происходит ли процесс кристаллизации при постоянной температуре или в интервале температур и какое количество фаз может одновременно существовать.

Элементы, входящие в сплав, называются компонентами. В зависимости от количества составляющих сплавы могут быть двух-, трех-, четырех- и более компонентными. Кроме основных компонентов, технические сплавы могут содержать в небольших количествах и другие элементы, называемые примесями. Постоянными примесями являются сера и фосфор.

Компоненты в жидком состоянии обладают неограниченной растворимостью. В твердом сплаве они образуют механическую смесь кристалликов исходных материалов или находятся в химическом соединении друг с другом или в виде так называемого твердого раствора.

Системой называют группу веществ, выделенную из прочих окружающих веществ для исследования в известных условиях температуры, давления и других факторов. Например, сплав определенного состава, в котором хотят проследить превращения, происходящие при нагреве или охлаждении, представляет собой систему.

Диаграмма состояний строится по критическим точкам, определяемым различными методами. Одним из важнейших методов является термический.

Диаграмма состояния системы железо — углерод имеет большое практическое значение и является основой для изучения процессов термической обработки чугуна и стали. По ней определяют виды термической обработки, температурные интервалы превращений и т. д.

Кроме того, диаграмма может быть использована для предсказания микроструктуры при любой заданной температуре.

Диаграмму создавали в течение многих лет ученые различных стран. Особенно большой вклад в построение диаграммы внес русский металлург Д. К. Чернов, которому принадлежит приоритет открытия превращений в сталях и критических точек.

По горизонтальной оси диаграммы откладывается содержание углерода в сплаве в процентах, по вертикальной — температура в °С. Каждая точка на диаграмме характеризует определенный состав сплава при определенной температуре. Превращения в сплавах железо — углерод происходят не толь­ко при затвердевании сплава в жидком состоянии, но и в твердом благодаря переходу железа из одной аллотропической формы в другую.

В зависимости от температуры и содержания углерода сплавы железо — углерод могут иметь структурные составляющие: феррит, цементит, перлит, аустенит, ледебурит и графит. Физико-химическая природа этих структурных составляющих различна.

Феррит представляет собой твердый раствор углерода в α-железе. При 723° С в α-железе может содержаться до 0,02% углерода, а при 20° С всего лишь 0,006% углерода. Феррит обладает высокой пластичностью, низкой твердостью (НВ 80-100), прочностью (σь = 25 кгс/мм 2 ) и магнитными свойствами, которые сохраняются до температуры 768° С.

Цементит — химическое соединение железа с углеродом, т. е. карбид железа Fe3C. Цементит содержит 6,63% углерода и до 210°С сохраняет магнитные свойства. Цементит очень хрупкий и обладает твердостью НВ 760-800. В структуре стали и чугуна он находится в виде игл, отдельных включений и сетки, по границам зерен.

Перлитом называют механическую смесь феррита с цементитом. Перлит— это продукт распада аустенита при медленном охлаждении. Он может быть пластинчатым или зернистым. В нем содержится 0,8% углерода. Механические свойства перлита зависят от степени измельчения частичек цементита.

Ледебурит представляет собой эвтектику, состоящую из цементита и аустенита и образующуюся при кристаллизации жидкого сплава, который содержит 4,3% углерода. Ледебурит обладает высокой твердостью (НВ до 700) и хрупкостью.

Чистое железо плавится и затвердевает при 1539°С (точка А), а чугун, содержащий 4,3% углерода, — при 1130°С (точка С).

Графит — это кристаллическая разновидность углерода. Он имеет черный цвет и встречается в структуре чугуна и графитизированной стали.

Когда температура сплава соответствует линии АС, начинается процесс кристаллизации: из жидкого сплава выделяются кристаллы аустенита, а на линии CD — цементит. Так как цементит выделяется из жидкого сплава в процессе первичной кристаллизации, то его называют первичным. Линия АЕСF является линией солидуса. В точке С сплав, содержащий 4,3% углерода, переходит в твердое кристаллическое состояние. Сплав такого состава называют эвтектическими. Структура эвтектического сплава представляет собой ледебурит. Таким образом, чугун, содержащий 4,3% углерода, называют эвтектическим, менее 4,3% углерода — дозвтектическим и более 4,3% углерода — заэвтектическим.

В зоне III диаграммы сплав состоит из цементита и жидкого сплава, а в зоне II — из кристаллов аустенита и жидкого сплава. Содержание углерода в кристаллах аустенита определяется линией AIE

При температурах, соответствующих линии АВ, из жидкого сплава выделяется твердый раствор δ. На горизонтали HIB при 1486°С происходит перитектическое превращение. Оставшийся жидкий сплав взаимодействует с твердым раствором δ и в точке / переходит в аустенит, левее точки / — в структуру аустенит — твердый раствор δ, правее точки / — в аустенит и жидкий сплав. Затвердевание сплавов, содержащих до 2% углерода, заканчивается на линии AHIE. Ниже линии HIE, в зоне IV, сплавы представляют собой аустенит.

В нижней части диаграммы превращения происходят в твердом состоянии. Линия GS (линия А3) представляет собой температуры начала выделения феррита из аустенита. Она показывает, что температура образования феррита понижается с 910°С (точка G) для чистого железа до 723° С (точка S) для сплава, содержащего 0,8% углерода. Феррит, который выделяется из аустенита при охлаждении, содержит не более 0,02% углерода. При понижении температуры до 723°С (линия PS) в зоне VIII сплав состоит из феррита и аустенита. В точке S аустенит переходит в перлит. В результате превращений сплавы, содержащие менее 0,8% углерода, имеют структуру феррита и перлита (зона IX). При 0,8% углерода в структуре остается только перлит, называемый эвтектоидом. Сталь, содержащую 0,8% углерода, называют эвтектоидной, менее 0,8 углерода — доэвтектоидной, более 0,8 % углерода — заэвтектоидной.

В зоне V находятся в равновесии две структурные составляющие — цементит и аустенит. Линия SE определяет предел растворимости углерода в аустените. При 1130°С (точка Е) в аустените растворяется 2% углерода. В зоне X структура сплава состоит из перлита и вторичного цементита.

В зоне VI сплав состоит из ледебурита, аустенита и вторичного цементита, в зоне VII — из первичного цементита и ледебурита, в зоне XI — из перлита, вторичного цементита и ледебурита и, наконец, в зоне XII — из ледебурита и первичного цементита.

Описанные изменения структуры сплавов при охлаждении обратимы.

Читайте также:  Какими электродами легче варить

Температуры, при которых начинается или заканчивается процесс фазовых превращений в металле или сплаве, называют критическими точками. Рассмотрим «стальной» участок диаграммы состояния железо — углерод:

Возьмем для примера три сплава: доэвтектоидный (/), эвтектоидный (//) и заэвтек-тоидный (///). При медленном нагреве от комнатной температуры до 723°С (точка а) в сплаве / фазовых изменений не происходит. При температуре 723°С перлит превращается в аустенит. Такую температуру называют нижней критической точкой и обозначают AC1 . Буква С указывает на то, что температура остановки получается при нагреве стали, а единица подтверждает образование критической точки на линии PSK. Охлаждение стали отмечают буквой r r1 ). При дальнейшем нагреве в сплаве / зерна феррита растворяются в аустените. Растворение заканчивается в точке а1, лежащей на линии GS. Температуру окончания растворения феррита в аустените называют верхней критической точкой и обозначают при нагреве сплава-АС3, при охлаждении — АГ3.

Если нагревать эвтектоидный сплав II,. то перлит в точке S (линия PSK) при 723°С превращается в аустенит. Критические точки AC1 и Ас3, при этом совместятся.

При нагреве сплава III в точке b при 723°С перлит превращается в аустенит (точка AC1). Дальнейший нагрев вызывает растворение цементита в аустените и в точке b1 лежащей на линии SE, процесс заканчивается. Эту точку называют критической и обозначают Аст.

Таким образом, на диаграмме железо — углерод критические точки, образующие линию PSK, обозначаются Ас (при нагреве) и Аr1 (при охлаждении), линия GSKАСз, линия SEАст и Аrт. Знание критических точек значительно облегчает термисту дальнейшее изучение процессов термической обработки сталей.

Рассматривая диаграмму состояний железо — цементит в связи с происходящими превращениями в сплаве, можно видеть, как на ней распределены фазы и в каком структурном сочетании.

Диаграмма состояния железо—углерод — это наглядное универсальное графическое изображение физико-химических процессов, происходящих в железоуглеродистых сплавах.

Так как практическое применение находят железоуглеродистые сплавы с массовой долей углерода до 6,69 %, рассмотрим диаграммы состояния этих сплавов. В металловедении практическое применение нашли два вида диаграмм состояния железо-углерод: стабильная диаграмма — железо—графит (свободный углерод) и метастабильная диаграмма — железо—цементит (карбид железа).

Железо — вещество аллотропное. Углерод также обладает аллотропией (полиморфизмом).

В природе углерод, находясь в твердом агрегатном состоянии, может существовать в форме графита и в форме алмаза. При нормальных условиях графит является более устойчивой формой существования. При повышении температуры и давления графит приобретает структуру алмаза. Следовательно, алмаз — это метастабильная модификация графита. Графит имеет гексагональную атомно-кристаллическую решетку.

В связи с тем что железоуглеродистый сплав состоит из двух химических веществ, обладающих аллотропией (полиморфизмом), это свойство сохраняется и в сплаве. Таким образом, благодаря полиморфизму железоуглеродистый сплав будет иметь следующие фазы или структуры:

  • • жидкая фаза (Ж);
  • • полужидкая фаза (Ж + Ф; Ж + А; Ж + Ц);
  • • структура феррита (Ф или Ре-сс);
  • • структура аустенита (А или Ре-у);
  • • структура цементита (Ц);
  • • структура ледебурита (Л);
  • • структура перлита (П).

Следует отметить, что феррит, аустенит и ледебурит образуются при первичной кристаллизации, а перлит — при вторичной кристаллизации. Кроме того, цементит в сплаве может быть трех модификаций: первичный (выпадает из жидкого раствора); вторичный (выпадает из аустенита); третичный (выпадает из феррита).

Рассмотрим диаграмму состояния железо—цементит (рис. 2.12). По диаграмме можно определить структуру сплавов как после медленного охлаждения, так и после нагрева.

Критическая точка А соответствует температуре плавления железа (1539 °С). Критическая точка И — температуре плавления цементита (1600 °С). Точки Н и Р показывают массовую долю углерода в феррите: Н — при температуре 1499 °С (высокотемпературная концентрация), Р — при температуре 727 °С (низкотемпературная концентрация). Полиморфное превращение в железе происходит в точках Си N. Критическая точка Епоказывает наибольшую массовую долю растворимости углерода в структуре аустенита — 2,14 % (наибольшую концентрацию). Температуре расплавления сплава (1147 °С) с массовой долей углерода 4,3 % при нагревании соответствует точка С. При охлаждении в этой точке выделяется ледебурит — механическая смесь первичного цементита и аустенита (эвтектика). Критическая точка Е соответствует выделению 100 %-ного первичного цементита (температура 1147 °С).

Соединяя характерные точки, соответствующие фазовым состояниям микроструктур, с критическими точками железа, получаем поверхности раздела (границы), которые раскрывают все физико-химические процессы, происходящие в железоуглеродистых сплавах при нагревании (охлаждении). Рассмотрим эти линии (границы) для сплава с массовой долей углерода 6,67 %.

По достижении температур, соответствующих линии АВСВ (линия ликвидуса), стали и чугуны при нагревании расплавляются и при охлаждении начинают затвердевать. Выше этой линии будет жидкая фаза, ниже — полужидкая.

При температурах, образующих линию АШЕСЕ (линия соли- дуса), стали и чугуны начинают плавиться при нагревании и затвердевают при охлаждении.

Линия РЕК лежит на горизонтальной прямой, соответствующей температуре 727 °С, при которой происходит первое аллотропное превращение (первичная кристаллизация). Второе аллотропное превращение (вторичная кристаллизация) происходит по линии (ТЗД.

Линия КЕИ — линия 100 %-ного химического соединения углерода с железом (цементит). Линия ?)РС — линия низкоуглеродистого твердого раствора феррита и третичного цементита.

Рис. 2.12. Диаграмма состояния сплава железо—углерод

Геометрическая фигура ЛВГНМ показывает область перитек- тического превращения сплава.

Диаграмма состояния железо—графит (Ре—С) представляет собой диаграмму, аналогичную диаграмме железо—цементит. Для более наглядного изучения диаграммы состояния железо- графит критические точки накладывают на диаграмму железо- цементит, что дает возможность лучшее разобраться в физикохимических процессах обоих сплавах. На рис. 2.12 диаграмма состояния сплава Ре—С показана пунктирной линией.

В сплаве железо—графит несколько изменяются критические температуры аллотропных превращений. Например, эвтектоид- ное превращение происходит при температуре 738 °С и массовой доле углерода 0,7 % (?’). В этом случае эвтектоид называется графитовым состоящим из феррита и графита. Штриховыми линиями показаны границы раздела состояния системы. При температуре 1153 °С (линия Е’С’Е’) структура начинает расплавляться с образованием жидкого раствора и первичного графита. Линия З’Е’ — граница выделения вторичного графита из аустенита. Линия С’Г)’ — граница полного расплавления первичного графита. При температуре 1153 °С образуется эвтектика с массовой долей углерода 4,26 %, имеющая структуру аустенита и графита. Такая структура называется графитовой.

Железоуглеродистые сплавы кристаллизуются при условии медленного охлаждения и наличия в сплаве графитизирующих компонентов (см. диаграмму состояния). Быстрота охлаждения железоуглеродистых сплавов способствует образованию сплава железо — цементит.

Зная конкретную массовую долю углерода в углеродистых сталях и чугунах, по диаграмме Бе—Ре3С на горизонтальной оси находим соответствующую точку. Из этой точки восстанавливаем перпендикуляры, а пересечения перпендикуляров с любыми плоскостями раздела (линиями) дадут нам критические точки для конкретных марок сталей и чугунов.

Читайте также:  Диаметр отверстия под болт м20

Рассмотрим пример определения температуры перекристаллизации и плавления стали марки 40 с массовой долей углерода 0,4 %.

На диаграмме железо—цементит на оси ординат (концентрация углерода) из точки, соответствующей 0,4 % углерода, восстанавливаем перпендикуляр 1—1. Перпендикуляр пересекает кривые диаграммы железо—цементит, образуя критические точки.

Сталь марки 40 с массовой долей углерода 0,4 % при нормальных условиях и до температуры 727 °С (рис. 2.13) будет иметь структуру: 50 % феррита + 50 % перлита. В процессе нагревания при температуре 727 °С (точка 1) структура перлита будет медленно распадаться, образуя структуру аустенита. В связи с тем что в процессе распада структур происходит интенсивное поглощение энергии (теплоты), на кривой будет горизонтальный участок 7—7′. После полного распада перлита в структуре стали до температуры 760 °С никаких изменений не происходит, сталь медленно нагревается (на диаграмме наклонная кривая 1—2), структура стали феррит + аустенит. При пересечении перпендикуляра 7—7 (см. рис. 2.12) с линией GS (точка 2) начинается преобразование структуры феррита в структуру аустенита. На диаграмме это горизонтальный участок 2—2′ (см. рис. 2.13), так как пока происходит распад феррита в аустенит, температура не повышается (происходит поглощение энергии). При дальнейшем нагревании от точки 2′ до точки 3 (от 760 °С до 1480 °С) структура стали будет постоянной — аустенит. В точке 3 (1480 °С) происходит расплавление части аустенита. Пока часть аустенита расплавляется, температура стали остается постоянной, и на кривой будет горизонтальный участок 3—3′. Между точками 3′ и 4 структура стали будет аустенит + жидкая фаза.

Рис. 2.13. Кривые нагрева (а) и охлаждения (6) стали марки 40:

Ф — феррит; А — аустенит; П — перлит;

Ж — жидкость; 1—5, Г—5′ — критические точки, соответствующие аллотропным превращениям

В точке 4 при температуре 1500 °С (на рис. 2.12 пересечение с горизонтальной прямой 1В) происходит перестройка структур оставшегося аустенита в феррит. На кривой будет горизонтальный участок 44 (см. рис. 2.13). До точки 5(1520 °С) структура стали будет феррит + жидкая фаза.

В точке 5 оставшийся феррит начинает медленно расплавляться, температура стали остается постоянной (1520 °С), на кривой будет снова горизонтальный участок 55‘. Выше линии 55 сталь имеет жидкую фазу. При охлаждении процесс происходит в обратном порядке (см. рис. 2.13, б).

Аналогично структуры и критические точки (температуры) определяются по диаграмме Ре—Ре3С для любой марки стали и чугуна. Кроме того, по диаграмме определяются температуры горячей обработки давлением и температуры различной термической и химико-термической обработки.

Наличие двух высокоуглеродистых фаз (графита и цементита) приводит к появлению двух диаграмм состояния: метастабильной − железо-цементит и стабильной − железо-графит. Свободная энергия цементита всегда больше, чем свободная энергия графита.

Кристаллические структуры цементита и аустенита близки, тогда как кристаллические структуры аустенита и графита существенно различаются. По составу аустенит и цементит ближе друг к другу и составу жидкой фазы, чем аустенит и графит (аустенит содержит до 2,14 % С, цементит − 6,67 % С, жидкая фаза − от 2,14 до 6,67 % С, графит – 100 % C). Поэтому образование цементита из жидкости или из аустенита происходит легче, работа образования зародыша, как и необходимые диффузионные изменения, меньше в случае кристаллизации цементита, чем при кристаллизации графита, несмотря на меньший выигрыш свободной энергии.

Диаграмма состояния железо-цементит приведена на рис.4.1.

АВСВD (линия ликвидус − место точек начала кристаллизации) и AHJECF (линия солидус − место точек конца кристаллизации) характеризуют начало и конец первичной кристаллизации, происходящей при затвердевании жидкой фазы.

Рис.4.1 Диаграмма состояния железо-цементит

Линии ES и PQ показывают предельную растворимость углерода, соответственно, в аустените и феррите. При понижении температуры растворимость уменьшается и избыток углерода выделяется в виде цементита. Цементит, выделяющийся из жидкого сплава, принято называть первичным, из аустенита − вторичным, из феррита − третичным.

Три горизонтальные линии HJB, ECF и РSК указывают на протекание трех превращений при постоянной температуре:

− при 1499 °С (HJB) происходит перитектическая реакция ЖB Н → AJ, в результате которой образуется аустенит;

− при 1147 °С (ECF) протекает эвтектическая реакция ЖC → АE + Ц (жидкость, состав которой соответствует точке С, превращается в эвтектическую смесь аустенита, состав которого соответствует точке Е, и цементита, называемую ледебуритом);

− при 727 °С (PSK) протекает эвтектоидная реакция A → ФР + Ц (в отличие от эвтектики, образующейся из жидкости, эвтектоид возникает из твердых фаз). Продукт превращения − эвтектоидная смесь феррита и цементита, называемая перлитом.

Перлит чаще имеет пластинчатое строение, т. е. состоит из чередующихся пластинок феррита и цементита. После специальной термической обработки перлит может иметь зернистое строение.

− жидкий расплав (Ж) − выше линии АВСD;

− феррит (Ф) – области ANH и GPQ;

− аустенит (А) − область JESGN.

Двухфазные области диаграммы:

AHB − в равновесии находится жидкий расплав и кристаллы δ-феррита;

NHJ − в равновесии кристаллы δ-феррита и аустенита;

JECB − в равновесии жидкий расплав и кристаллы аустенита;

CDF − в равновесии жидкий расплав и кристаллы цементита;

SECFK − в равновесии кристаллы аустенита и цементита;

GSP − в равновесии кристаллы аустенита и α-феррита;

QPSKL − в равновесии кристаллы феррита и цементита.

Сплавы железа с углеродом, содержащие до 0,02 % С, называют техническим железом.

Сплавы железа с углеродом, содержащие от 0,02 до 2,14 % С носят название сталей (от 0,02 до 0,8 % С − доэвтектоидные стали, от 0,8 до 2,14 % С − заэвтектоидные стали).

Сплавы железа с углеродом, содержащие от 2,14 до 6,67 %С называются чугунами (от 2,14 до 4,3 % С – доэвтектические чугуны, от 4,3 до 6,67 % С − заэвтектические чугуны).

В двухфазных областях в любой точке можно определить количество фаз и их концентрацию, используя правило отрезков. Например, определим химический состав и количество фаз для сплава системы железо-цементит в точке а, находящейся в области GSP (рис. 4.2).

Рис. 4.2. Использование правила отрезков для анализа диаграммы

В этой области структурные составляющие феррит и аустенит. Проведем горизонтальную линию через точку а до пересечения с линиями GP (точка b) и GS (точка с). Проекция точки b (b’) указывает химический состав феррита, а проекция точки с (с’) – состав аустенита.

Рассмотрим кристаллизацию некоторых сплавов, содержащих различное количество углерода. При анализе кристаллизации доэвтектоидной стали проведем для примера расчет числа степеней свободы по формуле:

Читайте также:  Перфоратор не держит бур что делать

где с – число степеней свободы;

k – количество компонентов;

Кристаллизация доэвтектоидной стали, содержащей более 0,51 % С (рис. 4.3), начинается в точке 1, где в жидкой фазе зарождаются первые зерна аустенита, и заканчивается в точке 2. В процессе кристаллизации состав жидкой фазы изменяется по линии ликвидус , а аустенита − по линии солидус JE.

Между точками 1 и 2 число степеней свободы с = 2 – 2 + 1 = 1 (два компонента – железо и углерод, две фазы – жидкость и аустенит), следовательно, процесс может идти со снижением температуры. После затвердевания сплав имеет однофазную структуру аустенита.

Между точками 2 и 3 идет охлаждение аустенита, и число степеней свободы с = 2 – 1 + 1 = 2 (два компонента – железо и углерод, одна фаза – аустенит), следовательно, процесс может идти со снижением температуры.

Между точками 3 и 4 происходит превращение аустенита − выделяя низкоуглеродистый феррит, аустенит обогащается углеродом в соответствии с линией GS и в точке 4 концентрация углерода в нем достигает эвтектоидной − 0,8% С, и число степеней свободы с = 2 – 2 + 1 = 1 (два компонента – железо и углерод, две фазы – аустенит и цементит), следовательно, процесс может идти со снижением температуры.

При постоянной температуре 727 °С (площадка 44′) происходит эвтектоидное превращение аустенита в мелкодисперсную механическую смесь феррита и цементита, называемую перлитом (A → ФР + Ц). В точке 4 число степеней свободы с = 2 – 3 + 1 = 0 (два компонента – железо и углерод, три фазы – аустенит, феррит и цементит), что подтверждает выделение перлита при постоянной температуре.

При дальнейшем охлаждении до точки 5 происходит выделение из феррита избыточного углерода (в связи с понижением растворимости по линии диаграммы PQ) в виде третичного цементита. Между точками 4′ и 5 число степеней свободы с = 2 – 2 + 1 = 1 (два компонента – железо и углерод, две фазы – феррит и цементит), следовательно, процесс может идти со снижением температуры. Конечная структура Ф + П + ЦIII (феррито-перлитная).

Количественное соотношение между ферритом и перлитом в доэвтектоидных сталях определяется содержанием углерода (чем выше содержание углерода, тем больше перлита).

Кристаллизация зазвтектоидных сталей (рис. 4.4) начинается в точке 1 выделением из жидкого расплава аустенита и заканчивается в точке 2. Состав жидкого расплава изменяется по линии , а аустенита − по линии JE. После затвердевания сплав имеет однофазную структуру аустенита.

Рис.4.3. Процесс кристаллизации Рис.4.4. Процесс кристаллизации

доэвтектоидных сталей зазвтектоидных сталей

При дальнейшем охлаждении от точки 2 до точки 3 структурных превращений сталь не претерпевает, идет простое охлаждение. В интервале точек 34 происходит выделение вторичного цементита в связи с уменьшением растворимости углерода в аустените согласно линии ES диаграммы. При медленном охлаждении цементит выделяется по границе аустенитных зерен. Состав аустенита изменяется согласно линии ES и в точке 4 при температуре 727 °С аустенит содержит 0,8% С.

На линии SK (на кривой − площадка 44′) происходит эвтектоидное превращение аустенита в перлит.

При дальнейшем охлаждении ниже точки 4′ из феррита, входящего в перлит, выделяется третичный цементит. Третичный цементит, наслаиваясь на кристаллы вторичного цементита и цементита перлита, не оказывает заметное влияние на свойства. Поэтому при рассмотрении структур заэвтектоидных сталей о третичном цементите обычно не упоминают. Конечная структура П + ЦII + ЦIII (перлито-цементитная).

Кристаллизация доэвтектических чугунов (рис. 4.5) начинается в точке 1, где при последующем охлаждении происходит выделение из жидкой фазы кристаллов аустенита переменного состава, концентрация которого определяется линией JE , а жидкого расплава − линией ликвидус . В точке 2 содержание углерода в расплаве достигает 4,3 % и при постоянной температуре 1147 °С оставшийся расплав кристаллизуется в эвтектику (дисперсную смесь аустенита, содержащего 2,14 % С, и цементита), называемая ледебуритом LC → АE + Ц. Ледебурит имеет сотовое или пластинчатое строение.

При дальнейшем охлаждении (участок 23) аналогично заэвтектоидной стали из аустенита (структурно свободного и входящего в состав ледебурита) выделяется избыточный углерод в виде вторичного цементита. Аустенит при этом обедняется углеродом и при температуре 727 °С приобретает состав, соответствующий эвтектоидному.

В точке 3 начинается эвтектоидное превращение аустенита в перлит при постоянной температуре 727 °С (площадка 33′). Перлит образуется из структурно свободного аустенита и из аустенита, входящего в состав ледебурита. Ледебурит, состоящий из смеси цементита и перлита, носит название видоизмененного ледебурита Лвид (П + Ц) в отличие от ледебурита состава Л (А + Ц).

При дальнейшем охлаждении от точки 3′ до точки 4 происходит выделение избыточного углерода из феррита, входящего в перлит и видоизмененный ледебурит, в виде третичного цементита, наслаивающегося на цементит перлита и ледебурита. Третичный цементит не влияет на свойства чугунов из-за незначительного количества, по сравнению с общим количеством цементита в чугунах. Конечный состав доэвтектического чугуна П + Лвид + ЦII (перлито-ледебурито-цементитная).

Кристаллизация заэвтектических чугунов (рис. 4.6) начинается в точке 1 выделением из жидкого расплава первичного цементита. При этом состав расплава изменяется по линии DC. Выделяя высокоуглеродистую фазу − цементит, расплав обедняется углеродом и при температуре 1147 °С содержит 4,3 % С. При постоянной температуре расплав кристаллизуется с образованием ледебурита.

Рис.4.5. Процесс кристаллизации Рис. 4.6. Процесс кристаллизации

доэвтектических чугунов заэвтектических чугунов

При дальнейшем охлаждении (площадка 23) из аустенита, входящего в ледебурит, выделяется избыточный углерод в виде вторичного цементита, и состав аустенита изменяется по линии ES .

При достижении температуры 727°С аустенит (площадка 33′), содержащий 0,8 % С, превращается в перлит A → ФР + Ц и образуется видоизмененный ледебурит.

При дальнейшем охлаждении от точки 3′ до точки 4 из феррита, входящего в состав перлита видоизмененного ледебурита, выделяется избыточный углерод согласно кривой РQ в виде третичного цементита, наслаивающегося на цементит перлита. Конечная структура заэвтектического чугуна Лвид + ЦI + ЦII (ледебуритно-цементитная).

Таким образом, у всех сталей, содержащих менее 2,14 % С, в результате первичной кристаллизации получается структура аустенита, а после затвердевания не содержится хрупкой структурной составляющей − ледебурита; у всех чугунов, содержащих более 2,14 % С, структура первичной кристаллизации состоит из ледебурита с первичным аустенитом или цементитом, а при комнатной температуре структура состоит из видоизмененного ледебурита, цементита и, у доэвтектического чугуна, перлита.

Стали при высоком нагреве имеют аустенитную структуру, обладающую высокой пластичностью, поэтому они легко деформируются при нормальных и повышенных температурах.

Чугуны обладают лучшими литейными свойствами, в том числе более низкой температурой плавления и имеют меньшую усадку.

Отправить ответ

  Подписаться  
Уведомление о
Adblock
detector