Из чего делают диоды

Д иод — самый простейший по устройству в славном семействе полупроводниковых приборов. Если взять пластинку полупроводника, например германия, и в его левую половину ввести акцепторную примесь, а в правую донорную, то с одной стороны получится полупроводник типа P, соответственно с другой типа N. В середине кристалла получится, так называемый P-N переход, как показано на рисунке 1.

На этом же рисунке показано условное графическое обозначение диода на схемах: вывод катода (отрицательный электрод) очень похож на знак «-». Так проще запомнить.

Всего в таком кристалле две зоны с различной проводимостью, от которых выходят два вывода, поэтому полученный прибор получил название диод, поскольку приставка «ди» означает два.

В данном случае диод получился полупроводниковый, но подобные устройства были известны и раньше: например в эпоху электронных ламп был ламповый диод, называвшийся кенотрон. Сейчас такие диоды ушли в историю, хотя приверженцы «лампового» звука считают, что в ламповом усилителе даже выпрямитель анодного напряжения должен быть ламповым!

Рисунок 1. Строение диода и обозначение диода на схеме

На стыке полупроводников с P и N проводимостями получается P-N переход (P-N junction), который является основой всех полупроводниковых приборов. Но в отличии от диода, у которого этот переход лишь один, транзисторы имеют два P-N перехода, а, например, тиристоры состоят сразу из четырех переходов.

P-N переход в состоянии покоя

Даже если P-N переход, в данном случае диод, никуда не подключен, все равно внутри него происходят интересные физические процессы, которые показаны на рисунке 2.

Рисунок 2. Диод в состоянии покоя

В области N имеется избыток электронов, она несет в себе отрицательный заряд, а в области P заряд положительный. Вместе эти заряды образуют электрическое поле. Поскольку разноименные заряды имеют свойство притягиваться, электроны из зоны N проникают в положительно заряженную зону P, заполняя собой некоторые дырки. В результате такого движения внутри полупроводника возникает, хоть и очень маленький (единицы наноампер), но все-таки ток.

В результате такого движения возрастает плотность вещества на стороне P, но до определенного предела. Частицы обычно стремятся распространяться равномерно по всему объему вещества, подобно тому, как запах духов распространяется на всю комнату (диффузия), поэтому, рано или поздно, электроны возвращаются обратно в зону N.

Если для большинства потребителей электроэнергии направление тока роли не играет, — лампочка светится, плитка греется, то для диода направление тока играет огромную роль. Основная функция диода проводить ток в одном направлении. Именно это свойство и обеспечивается P-N переходом.

Далее рассмотрим, как ведет себя диод в двух возможных случаях подключения источника тока.

Включение диода в обратном направлении

Если к полупроводниковому диоду подключить источник питания, как показано на рисунке 3, то ток через P-N переход не пройдет.

Рисунок 3. Обратное включение диода

Как видно на рисунке, к области N подключен положительный полюс источника питания, а к области P – отрицательный. В результате электроны из области N устремляются к положительному полюсу источника. В свою очередь положительные заряды (дырки) в области P притягиваются отрицательным полюсом источника питания. Поэтому в области P-N перехода, как видно на рисунке, образуется пустота, ток проводить просто нечем, нет носителей заряда.

При увеличении напряжения источника питания электроны и дырки все сильней притягиваются электрическим полем батарейки, в области же P-N перехода носителей заряда остается все меньше. Поэтому в обратном включении ток через диод не идет. В таких случаях принято говорить, что полупроводниковый диод заперт обратным напряжением.

Увеличение плотности вещества около полюсов батареи приводит к возникновению диффузии, — стремлению к равномерному распределению вещества по всему объему. Что и происходит при отключении элемента питания.

Обратный ток полупроводникового диода

Вот здесь как раз и настало время вспомнить о неосновных носителях, которые были условно забыты. Дело в том, что даже в закрытом состоянии через диод проходит незначительный ток, называемый обратным. Этот обратный ток и создается неосновными носителями, которые могут двигаться точно так же, как основные, только в обратном направлении. Естественно, что такое движение происходит при обратном напряжении. Обратный ток, как правило, невелик, что обусловлено незначительным количеством неосновных носителей.

С повышением температуры кристалла количество неосновных носителей увеличивается, что приводит к возрастанию обратного тока, что может привести к разрушению P-N перехода. Поэтому рабочие температуры для полупроводниковых приборов, — диодов, транзисторов, микросхем ограничены. Чтобы не допускать перегрева мощные диоды и транзисторы устанавливаются на теплоотводы – радиаторы.

Читайте также:  Как сделать графитовые щетки

Включение диода в прямом направлении

Показано на рисунке 4.

Рисунок 4. Прямое включение диода

Теперь изменим полярность включения источника: минус подключим к области N (катоду), а плюс к области P (аноду). При таком включении в области N электроны будут отталкиваться от минуса батареи, и двигаться в сторону P-N перехода. В области P произойдет отталкивание положительно заряженных дырок от плюсового вывода батареи. Электроны и дырки устремляются навстречу друг другу.

Заряженные частицы с разной полярностью собираются около P-N перехода, между ними возникает электрическое поле. Поэтому электроны преодолевают P-N переход и продолжают движение через зону P. При этом часть из них рекомбинирует с дырками, но большая часть устремляется к плюсу батарейки, через диод пошел ток Id.

Этот ток называется прямым током. Он ограничивается техническими данными диода, некоторым максимальным значением. Если это значение будет превышено, то возникает опасность выхода диода из строя. Следует, однако, заметить, что направление прямого тока на рисунке совпадает с общепринятым, обратным движению электронов.

Можно также сказать, что при прямом направлении включения электрическое сопротивление диода сравнительно небольшое. При обратном включении это сопротивление будет во много раз больше, ток через полупроводниковый диод не идет (незначительный обратный ток здесь в расчет не принимается). Из всего вышесказанного можно сделать вывод, что диод ведет себя подобно обычному механическому вентилю: повернул в одну сторону — вода течет, повернул в другую — поток прекратился. За это свойство диод получил название полупроводникового вентиля.

Чтобы детально разобраться во всех способностях и свойствах полупроводникового диода, следует познакомиться с его вольт – амперной характеристикой. Также неплохо узнать о различных конструкциях диодов и частотных свойствах, о достоинствах и недостатках. Об этом будет рассказано в следующей статье.

Мы очень часто применяем в своих схемах диоды, а знаете ли вы как он работает и что из себя представляет? Сегодня в "семейство" диодов входит не один десяток полупроводниковых приборов, носящих название "диод". Диод представляет собой небольшую емкость с откачанным воздухом, внутри которой на небольшом расстоянии друг от друга находится анод и второй электрод — катод, один из которых обладает электропроводностью типа р, а другой — n.

Чтобы представить как работает диод, возьмем для примера ситуацию с накачиванием колеса при помощи насоса. Вот мы работаем насосом, воздух закачивается в камеру через ниппель, а обратно этот воздух выйти через ниппель не может. По сути воздух, это тот же электрон в диоде, вошел электрончик, а обратно выйти уже нельзя. Если вдруг ниппель выйдет из строя то колесо сдуется, будет пробой диода. А если представить что ниппель у нас исправный, и если мы будем нажимая на пипку ниппеля выпускать воздух из камеры, причем нажимая как нам хочется и с какой длительностью – это будет управляемый пробой. Из этого можно сделать вывод что диод пропускает ток только в одном направлении (в обратном направлении тоже пропускает, но совсем маленький)

Внутреннее сопротивление диода (открытого) — величина непостоянная, она зависит от прямого напряжения приложенного к диоду. Чем больше это напряжение, тем больше прямой ток через диод, тем меньше его пропускное сопротивление. Судить о сопротивлении диода можно по падению напряжения на нем и току через него. Так, например, если через диод идет прямой ток Iпр. = 100 мА (0,1 А) и при этом на нем падает напряжение 1В, то (по закону Ома) прямое сопротивление диода будет: R = 1 / 0,1 = 10 Ом.

Отмечу сразу, что вдаваться в подробности и сильно углубляться, строить графики, писать формулы мы не будем – рассмотрим все поверхностно. В данной статье рассмотрим разновидности диодов, а именно светодиоды, стабилитроны, варикапы, диоды Шоттки и др.

Диоды

Обозначаются на схемах вот так:

Треугольная часть является АНОД’ом, а черточка это КАТОД. Анод это плюс, катод – минус. Диоды например, используют в блоках питания для выпрямления переменного тока, при помощи диодного моста можно превратить переменной ток в постоянный, применяются для защиты разных устройств от неправильной полярности включения и т. п.

Диодный мост представляет собой 4 диода, которые подключаются последовательно, причем два диода из этих четырех включены встречно, посмотрите на рисунки ниже.

Именно так и обозначается диодный мост, правда в некоторых схемах обозначают сокращенным вариантом:

подключаются к трансформатору, на схеме это будет выглядеть вот так:

Диодный мост предназначен для преобразования, чаще говорят для выпрямления переменного тока в постоянный. Такое выпрямление называется двухполупериодным. Принцип работы диодного моста заключается в пропускании положительной полуволны переменного напряжения положительными диодами и обрезании отрицательной полуволны отрицательными диодами. Поэтому на выходе выпрямителя образуется немного пульсирующее положительное напряжение с постоянной величиной.

Читайте также:  Как измерить длину предмета с помощью штангенциркуля

Для того, чтобы этих пульсаций не было, ставят электролитические конденсаторы. после добавления конденсатора напряжение немного увеличивается, но отвлекаться не будем, про конденсаторы можете почитать здесь.

Диодные мосты применяют для питания радиоаппаратуры, применяются в блоках питания и зарядных устройствах. Как уже говорил, диодный мост можно составить из четырех одинаковых диодов, но продаются и готовые диодные мосты, выглядят они вот так:

Диод Шоттки

Диоды Шоттки имеют очень малое падение напряжения и обладают повышенным быстродействием по сравнению с обычными диодами.

Ставить вместо диода Шоттки обычный диод не рекомендуется, обычный диод может быстро выйти из строя. Обозначается на схемах такой диод так:

Стабилитрон

Стабилитрон препятствует превышению напряжения выше определённого порога на конкретном участке схемы. Может выполнять как защитные так и ограничительные функции, работают они только в цепях постоянного тока. При подключении следует соблюдать полярность. Однотипные стабилитроны можно соединять последовательно для повышения стабилизируемого напряжения или образования делителя напряжений.

Стабилитроны на схемах обозначаются следующим образом:

Основным параметром стабилитронов является напряжение стабилизации, стабилитроны имеют различные напряжения стабилизации, например 3в, 5в, 8.2в, 12в, 18в и т.п.

Варикап

Варикап (по другому емкостной диод) меняет своё сопротивление в зависимости от поданного на него напряжения. Применяется как управляемый конденсатор переменной емкости, например, для настройки высокочастотных колебательных контуров.

Тиристор

Тиристор имеет два устойчивых состояния: 1) закрытое, то есть состояние низкой проводимости, 2) открытое, то есть состояние высокой проводимости. Другими словами он способен под действием сигнала переходить из закрытого состояния в открытое.

Тиристор имеет три вывода, кроме Анода и Катода еще и управляющий электрод — используется для перевода тиристора во включенное состояние. Современные импортные тиристоры выпускаются и в корпусах ТО-220 и ТО-92.

Тиристоры часто используются в схемах для регулировки мощностей, для плавного пуска двигателей или включения лампочек. Тиристоры позволяют управлять большими токами. У некоторых типов тиристоров максимальный прямой ток достигает 5000 А и более, а значение напряжений в закрытом состоянии до 5 кВ. Мощные силовые тиристоры вида Т143(500-16) применяются в шкафах управления эл.двигателями, частотниках.

Симистор

Симистор используется в системах, питающихся переменным напряжением, его можно представить как два тиристора, которые включены встречно-параллельно. Симистор пропускает ток в обоих направлениях.

Светодиод

Светодиод излучает свет при пропускании через него электрического тока. Светодиоды применяются в устройствах индикации приборов, в электронных компонентах (оптронах), сотовых телефонах для подсветки дисплея и клавиатуры, мощные светодиоды используют как источник света в фонарях и т.д. Светодиоды бывают разного цвета свечения, RGB и т.д.

Обозначение на схемах:

Подробнее про светодиоды можно почитать здесь.

Инфракрасный диод

Инфракрасные светодиоды (сокращенно ИК диоды) излучают свет в инфракрасном диапазоне . Области применения инфракрасных светодиодов это оптические контрольно-измерительные приборы, устройства дистанционного управления, оптронные коммутационные устройства, беспроводные линии связи. Ик диоды обозначаются так же как и светодиоды.

Инфракрасные диоды излучают свет вне видимого диапазона, свечение ИК диода можно увидеть и посмотреть например через камеру сотового телефона, данные диоды так же применяют в камерах видеонаблюдения, особенно на уличных камерах чтобы в темное время суток была видна картинка.

Фотодиод

Фотодиод преобразует свет попавший на его фоточувствительную область, в электрический ток, находит применение в преобразовании света в электрический сигнал.

Фото диоды (а так же фоторезисторы, фототранзисторы) можно сравнить с солнечными батареями. Обозначаются на схемах так:

Существует немало устройств, созданных с целью преобразования электрического тока, и выпрямительные диоды – одни из них.

Выпрямительный диод – преобразователь тока переменного в постоянный. Является одним из видов полупроводников. Широкое применение получил благодаря основной характеристике – переводу электрического тока строго в одном направлении.

Принцип действия

Необходимый эффект при работе устройства создают особенности p-n перехода. Заключаются в том, что рядом с переходом двух полупроводников встраивается слой, который характеризуется двумя моментами: большим сопротивлением и отсутствием носителей заряда. Далее при воздействии на данный запирающий слой переменного напряжения извне толщина его уменьшается и впоследствии исчезает. Возрастающий во время этого ток и является прямым током, который проходит от анода к катоду. В случае перемены полярности внешнего переменного напряжения запирающий слой будет больше, и сопротивление неминуемо возрастет.

ВАХ выпрямительного диода (вольт-амперная характеристика) также дает представление о специфике работы выпрямителя и является нелинейной. Выглядит следующим образом: существует две ветви – прямая и обратная. Первая отражает наибольшую проводимость полупроводника при возникновении прямой разницы потенциалов. Вторая указывает на значение низкой проводимости при обратной разнице потенциалов.

Вольт-амперные характеристики выпрямителя прямо пропорциональны температуре, с повышением которой разность потенциалов сокращается. Электрический ток не пройдет через устройство в случае низкой проводимости, но лавинный пробой происходит в случае возросшего до определенного уровня обратного напряжения.

Читайте также:  Фреза торцевая насадная гост

Использование сборки

При эксплуатации выпрямительного полупроводникового диода польза извлекается только из половины волн переменного тока, соответственно, безвозвратно теряется более половины входного напряжения.

С целью улучшить качество преобразования переменного тока в постоянный используется сборка из четырех устройств – диодный мост. Выгодно отличается тем, что пропускает ток на протяжении каждого полупериода. Диодные мосты производят в виде комплекта, заключенного в пластиковый корпус.

Принципиальная схема диодного моста к содержанию ↑

Физико-технические параметры

Основные параметры выпрямительных диодов базируются на таких значениях:

  • максимально допустимом значении разницы потенциалов при выпрямлении тока, при котором устройство не выйдет из строя;
  • наибольшем среднем выпрямленном токе;
  • наибольшем значении обратного напряжения.

Выпрямители промышленность выпускает с разными физическими характеристиками. Соответственно, устройства имеют разную форму и способ монтажа. Разделяются при этом на три группы:

  1. Выпрямительные диоды большой мощности. Характеризуются пропускной способностью тока до 400 А и являются высоковольтными. Высоковольтные выпрямительные диоды производятся в корпусах двух видов –штыревом, где корпус герметичный и стеклянный, и таблеточном, где корпус из керамики.
  2. Выпрямительные диоды средней мощности. Обладают пропускной способность от 300 мА до 10А.
  3. Выпрямительные диоды малой мощности. Максимально допустимое значение тока – до 300 мА.

Выбор выпрямительных диодов

При приобретении устройства необходимо руководствоваться такими параметрами:

  • значениями вольт-амперной характеристики максимально обратного и пикового тока;
  • максимально допустимым обратным и прямым напряжением;
  • средней силой выпрямленного тока;
  • материалом прибора и типом монтажа.

В зависимости от физических характеристик на корпус устройства наносится соответствующее обозначение. Каталог с маркировкой выпрямительных диодов представлен в специализированном справочнике. Необходимо знать, что маркировка импортных аналогов отличается от отечественных.

Также стоит обратить внимание на то, что выпрямительные схемы отличаются по количеству фаз:

  1. Однофазные. Широко применяются для бытовых электроприборов. Существуют диоды автомобильные и для электродуговой сварки.
  2. Многофазные. Незаменимы для промышленного оборудования, общественного и специального транспорта.

Диод Шоттки

Отдельную позицию занимает диод Шоттки. Изобрели его в связи с растущими потребностями в развивающейся отрасли радиоэлектроники. Основное отличие его от остальных диодов заключается в том, что в его конструкцию заложен металл-полупроводник как альтернатива p-n переходу. Соответственно, диод Шоттки обладает своими, уникальными свойствами, которыми не могут похвастаться кремниевые выпрямительные диоды. Некоторые из них:

  • оперативная возобновляемость заряда благодаря его низкому значению;
  • минимальное падение напряжения на переходе при прямом включении;
  • ток утечки обладает большим значением.

При изготовлении диода Шоттки применяют такие материалы, как кремний и арсенид галлия, но иногда применяется и германий. Свойства материалов немного отличаются, но в любом случае, максимально допустимое обратное напряжение для выпрямителя Шоттки составляет не более 1200 V.

В противовес всем достоинствам конструкция данного вида имеет и минусы. Например, в сборке моста устройство категорически не воспринимает превышение обратного тока. Нарушение условия приводит к поломке выпрямителя. Также малое падение напряжения происходит при невысоком напряжении около 60-70 V. Если значение превышает этот показатель, то устройство превращается в обыкновенный выпрямитель.

Стоит отметить, что достоинства диода мощного выпрямительного Шоттки значительно превышают недостатки.

Диод-стабилитрон

Для стабилизации напряжения используют специальное приспособление, способное работать в режиме пробоя, – стабилитрон, зарубежное название которого «диод Зенера». Выполняет свою функцию устройство, работая в режиме пробоя при напряжении обратного смещения. Возрастание силы тока происходит в момент пробоя, одновременно опускается до минимума дифференциальное значение, вследствие чего напряжение стабильное и охватывает достаточно серьезный диапазон обратных токов.

Практическое использование выпрямительного диода

В связи с неудержимым развитием научно-технического прогресса применение выпрямителей затронуло все сферы жизнедеятельности человека. Диоды силовые выпрямительные эксплуатируются в таких узлах и механизмах:

  • в блоках питания главных двигателей транспортных средств (наземных, воздушных и водных), промышленных станков и техники, буровых установок;
  • в комплектации диодного моста для сварочных аппаратов;
  • в выпрямительных установках для гальванических ванн, используемых для получения цветных металлов или нанесения защитного покрытия на деталь или изделие;
  • в выпрямительных установках для очистки воды и воздуха, фильтрах различного рода;
  • для передачи электроэнергии на дальние расстояния посредством высоковольтной линии электропередач.

В повседневной жизни выпрямители используют в различных транзисторных схемах. Применяют в основном маломощные устройства как в виде однополупериодного выпрямителя, так и виде диодного моста. Например, диоды выпрямительного блока генератора хорошо известны автолюбителям.

Отправить ответ

  Подписаться  
Уведомление о
Adblock
detector