Измерение температуры воды пирометром

Все пирометры в каталоге . Пирометр бесконтактно измеряет температуру предметов по инфракрасному излучению того места куда подсвечивает лазерный указатель. Пирометры измеряют температуры в спектральном диапазоне 8. 14 мкм. Тепловое излучение предметов проходит через объектив и фокусируется на приемнике, который преобразует его в электрический сигнал и отображается на дисплее в виде температуры.

Сравнительный тест и обзор пирометров

Для теста возьмем пирометры CEM DT-812, АКИП-9302, АКИП-9304, Testo 830-T1, Testo 830-T2. Пирометр CEM самый компактный, пирометр Testo хорошо лежит в руке и сделан из качественных материалов.

Температуру сравнивать результаты будем с показаниям температуры термогигрометра Testo 608-H1. Термогирометр установили рядом с картонной коробкой и выдержали время, чтобы температура была равна. Далее измеряем температуру пирометрами и сравним полученные результаты с показанием термогигрометра.

Самый точный пирометр из всех оказался Testo 830-T2 с двуми лазерными указателями, которые указывают крайние точки диаметра пятна измерения.

Самая большое отклонение у пирометра АКИП-9304, это связано с большим диапазон измерения температуры до 1000 градусов. Для него 25 градусов это начало шкалы и поэтому большая погрешность, до 100 градусов допустимая погрешность ± 2 °С. Для АКИП-9304 оптимально измерять температуру в середине шкалы около 500 °С.

  1. недорогие пирометры CEM достаточны для большинства измерений;
  2. при выборе пирометра необходимо выбирать пирометр с наименьшим диапазоном измерения;
  3. при измерение температуры различных поверхностей результаты могут отличаться.

Соберем в одну таблицу пирометры по: наименование, диапазон измерения, оптическому разрешению, количество лазерных указателей, возможность подключения внешней термопары и диапазон измерения термопарой.

Сравнительная таблица пирометров (инфракрасных термометров)

CEM DT-810

CEM DT-811

CEM DT-8806H

АКИП-9301

Диапазон

измерения

Погрешность

Оптическое

разрешение

Кол. лазерных

указателей

Наличие

термопары

Название Fluke 59 MAX Testo 805
Изображение
Цена 1950 руб. 2200 руб. 2500 руб. 2550 руб. 2770 руб. 3630 руб. 3900 руб.
-30 . 380 °С -30 . 500 °С -30 . 350 °С -25. +250 °С
±2% ±2% ±2% ± 0,3℃ ±2% ±2% ±2%
8:1 8:1 8:1 8:1 8:1
1 1 1 1 1

CEM DT-8833

АКИП-9303

Testo 830-T1

АКИП-9302

Диапазон

измерения

Погрешность

Оптическое

разрешение

Кол.

указателей

Наличие

термопары

Название CEM DT-8663 Fluke 59 MAX+ Fluke 62 MAX
Изображение
Цена 4850 руб. 4290 руб. 4900 руб. 4480 руб. 5250 руб. 5610 руб. 5790 руб.
-50. 800 °С -28. 535 °С -30. +400 °С -28 ℃. 535 ℃ -50. 380 °С -30. 500 °С -30. 500 °С
±1.5% ±2% ±2% ±2% ±1.5% ±2% ±2%
13:1 12:1 10:1 12:1 20:1 8:1 10:1
1 1 1 1 2 1 1
-50. 800 °С -200. 1380 °С

Название

Testo 810

Testo 830-T2

АКИП-9304

Fluke 62 MAX+

CEM DT-8839

Testo 831

Изображение

Цена

Диапазон

измерения

Оптическое

разрешение

Кол. лазерных

указателей

Наличие

термопары

Зависимость площади измерения от оптического разрешения

Коэффиицент оптического разрешения (показатель оптического визирования) — отношение расстояния от пирометра до поверхности измерения к диаметру пятна измерения. Чем больше расстояние от пирометра до поверхности измерения, тем больше пятно измерения. Например на расстоянии 1 м при коэффициенте оптического разрешения 8:1 пятно измерения будет 13 см. Чем больше оптическое разрешение, тем меньше площадь измерения температуры поверхности и точнее результат. Область обозначенная серым цветом указывает площадь поверхности, на которой будет производиться измерение температуры. Красной точкой обозначается лазерный указатель пирометра. Некоторые модели имеют несколько лазерных указателей, которые указывают границы области измерения температуры.

Для того чтобы получить диаметр пятна измерения необходимо вычислить по формуле D=(1/R)*L, где R — оптическое разрешение, L — длина до поверхности измерения. Например 1/8 * 5 м = 63 см диаметр пятна измерения с расстояния 5 м при оптическом разрешении 1:8.

На что влияет коэффициент оптического разрешения увидим на примере измерения температуры стены и трубы пирометром АКИП-9303 с оптикой 12:1. Измеряем температуру стены сперва на расстоянии 1 м (диаметр пятна 8 см), потом с расстояния 30 см (диаметр пятна 2,5 см). При измерении температуры стены с расстояния 1 м оптическое разрешение не имеет ни какого значения, т.к. объект измерения значительно больше пятна измерения. Результаты измерений ниже.

Читайте также:  Холодная сварка для дюралюминия

Второй случай когда измеряемый объект меньше площади пятна измерения, пирометр покажет средний результат в этом пятне. Измерим температуру трубы и стены с расстояния 30 см. В данной ситуации пятно измерения больше объекта, поэтому важно высокое оптическое разрешение. Результаты измерений ниже.

Как измерить температуру зеркальных поверхностей

Чтобы измерить температуру зеркально отполированной поверхности необходимо нанести на нее темную краску или наклеить, например бумажный скотч. Вместо краски может использоваться водный раствор графита от карандаша. Пирометр не может точно измерить температуру прозрачных поверхностей. Для измерения температуры зеркальных поверхностей рекомендуется использовать специальные наклейки с коэффициентом излучения равным 0,95. В примере ниже использовалась простая самоклеющаяся бумага и черный маркер. Измерение температуры зеркала дает результаты немного меньше, чем с наклекой и черным маркером. В данном случае результаты отличаются не значительно, в другой ситуации могут отличаться больше.

При измерении пирометром результат измерения зависит от коэффициента излучения. Большинство материалов имеет коэффициент эмиссии (излучающей способности) от 0,8 до 0,98. Стандартный коэффициент излучения у пирометров 0,95. Коэффициенты излучения почти всех материалов при температуре ноль градусов существенно не отличаются от значений при 25 градусах. В зависимости от состояния поверхности коэффициент эмиссии может быть другой. Пыль, дым, пар влияют на оптику пирометра и снижают реальную температуру.

Выбрать пирометры можете в каталоге.

Можно ли с помощью недорогих пирометров точно измерить температуру? Если нет, то какова погрешность и от чего она будет зависеть?

Пирометр – прибор (в данном случае мы говорим о распространенных бытовых инфракрасных моделях), измеряющий уровень электромагнитного излучения предмета в определенном спектре и на основе его интенсивности определяющий температуру.

От чего зависит точность измерений пирометром

1. От излучательной способности поверхности тела. У идеальной модели черного тела она равна 1. У идеального зеркала – 0. Основная масса тел имеет излучательную способность в диапазоне от 0,85 до 0,95. Потому дешевые модели пирометров, где нет возможности ручного указания излучательной способности, обычно настроены на наиболее типичное значение 0,95.

Значения излучательной способности берут из различных справочников и таблиц, но все они являются предметом споров и могут применяться лишь с оговорками. Вот примеры значений излучательной способности некоторых материалов:

Материал Коэффициент излучения
Алюминиевые сплавы от 0,1 до 0,25
Алюминий (полированный) 0,05
Асбест 0,95
Асфальт 0,93
Бетон от 0,7 до 0,85
Бумага и картон от 0,8 до 0,9
Вода 0,97
Кварц (необработанный) 0,9
Красный кирпич (не шлифованный) от 0,75 до 0,9
Лакированные изделия 0,9
Лакированный алюминий 0,5
Латунь (неполированная) 0,2
Латунь (полированная) 0,1
Лесоматериалы (различные) от 0,8 до 0,9
Лед 0,97
Луженая сталь 0,1
Масляная краска (любого цвета) 0,95
Медь (полированная) 0,05
Медь листовая 0,8
Мрамор 0,9
Нержавеющая сталь (полированная) 0,1
Нержавеющая сталь (разная) от 0,2 до 0,6
Обожженная глина 0,75
Пластмассы (различные, твердые) от 0,8 до 0,95
Полиэтиленовая пленка от 0,2 до 0,3
Расплавленная мягкая сталь от 0,3 до 0,4
Резина (гладкая) 0,9
Резина (негладкая) 0,98
Свинец (оксидированный) 0,6
Свинец (чистый) 0,1
Серебро (полированное) 0,05
Сталь 0,6
Стекло 0,92
Уголь (графит) 0,75
Уголь (сажа) 0,95
Цинк (окисленный) 0,1
Чугун (необработанный) ржавый 0,95
Чугун (полированный) 0,2
Штукатурка 0,9
Эмаль (любого цвета) 0,9

Реальная погрешность измерений недорогими пирометрами, вносимая неточным указанием излучательной способности, обычно лежит в диапазоне от 3 до 20% при ошибке указания от 10% до 30% соответственно.

Там, где нужно провести максимально точные измерения, поверхность сначала покрывают специальными лаками с достоверно известной излучательной способностью.

2. От температуры тела. Излучательная способность тел меняется в зависимости от температуры и на диапазонах от 300 до 900 градусов ошибка может быть в 1,5 и более раз. Более того, пирометры рассматриваемого нами класса не способны делать точных измерений объектов с температурой 500 и более градусов.

3. От температуры окружающей среды. В качестве датчиков в пирометрах чаще всего используются полупроводниковые элементы – болометры, фотодиоды, пироэлектрики, термоэлементы. Их характеристики напрямую зависят от окружающей температуры. Если усреднять, то изменение их температуры на каждые 10°С будет давать дополнительную погрешность в 1%.

Читайте также:  Как правильно насаживать топор на топорище

4. От расстояния. Поскольку инфракрасные пирометры снабжены оптической системой, то площадь, с которой снимаются показания излучения для определения температуры, напрямую зависит от расстояния до объекта.

И тут важно, чтобы область, с которой снимаются показания, не выходила за края объекта. Для каждой модели пирометра значения площади от расстояния будет свое, и оно обязательно указывается в инструкции. Многие модели среднего и высшего ценовых диапазонов имеют лазерные указатели в виде одного, двух или более лучей, которые обозначают границы пятна.

Рекомендации по использованию пирометров

— Большинство недорогих пирометров не пригодно для измерения температур полированных металлических поверхностей или просто светлых металлов. Использовать с оговорками можно лишь те, у которых имеется возможность ручного указания значений излучательной способности материалов.
— Любые предметы или частицы (пар, дым, пыль), попадающие в область измерения будут влиять на результаты.
— Нельзя измерить температуру объектов через прозрачные предметы (стекло, пленку), поскольку по факту будет измерена температура стекла и т.д.

Вам также может быть интересно:
— Тест недорогого пирометра GM320

Пирометр – это аппарат для определения теплового состояния тел бесконтактным способом. Появились эти приборы в середине 60-х годов ХХ века. Принцип их работы основан на инфракрасном приёмнике, который производит измерения количества тепловой энергии, излучаемой телом, путём построения сравнительных параллелей. Результатом анализа являются величины температуры нагрева или охлаждения объектов исследования. Открытие этого метода позволило расширить диапазон для измерения температур как твёрдых, так и жидких тел.

Пирометры и принцип их работы

Изначально под пиротермометрами (пирометрами) для измерения температуры бесконтактным методом подразумевались приспособления, предназначенные для определения теплового состояния сильно нагретых предметов визуально, по яркости и цвету. Со временем эти приборы претерпели качественные изменения. Появились инфракрасные радиометры, которые могут диагностировать не только высокие, но и достаточно низкие (от 0º С и ниже) температуры. Они определяют мощность излучения тепла объектом в зоне инфракрасных электромагнитных волн и видимого света.

Пирометры для измерения температуры бесконтактным методом принято классифицировать как:

  • оптические – определяют температуру разогретого тела визуально, без вспомогательных устройств, сравнивая его цвет с цветом нити эталона;
  • цветовые или мультиспектральные — определяют температуру методом сравнения теплового излучения тела в различных спектрах;
  • радиационные – используют пересчитанный показатель мощности теплового излучения для определения температур. Пирометры, производящие измерения в пределах широкой полосы спектральных излучений, называются пирометрами полного излучения.

Тела, имеющие температуру выше абсолютного нуля, являются источником тепла. Оптические (яркостные) пирометры дистанционно определяют температуру сильно нагретых (до свечения) объектов, ориентируясь на их тепловое излучение в видимой части спектра. Оптическая часть этих приборов состоит из телескопа с объективом и окуляра. Перед окуляром находится красный световой фильтр. Вольфрамовая нить лампочки термометра расположена в фокусе объектива.

Степень нагрева объекта сообщает определённый цвет его излучению, что и даёт возможность диагностировать тепловое состояние объекта путём сравнения цвета его излучения с цветом накала нити в окуляре прибора. Ориентиром для контроля температуры по тепловому излучению принято считать «чёрное тело», которое имеет наибольшую энергию излучения при данной температуре по сравнению с другими телами. Такими пирометрами, в основном, пользуются для измерения температур тел от 300ºС до 6000ºС, хотя для этого метода верхний предел не ограничен.

Принцип действия цветовых (мультиспектральных) пирометров основан на сравнении количества энергии излучения двух узких монохроматических видимых участков спектра. В отличие от оптических, показатели цветовых аппаратов практически не зависят от колебаний коэффициента излучающих возможностей тел, зависящих от их температуры, состава и качества поверхности. Наиболее интересными на сегодняшний день являются цветовые пирометры на фотоэлементах.

Если вас интересует покупка инфракрасных пирометров то советую обратить внимание на компанию Конрад, одного из лидеров измерительной электроники.

Самыми широко используемыми аппаратами в сфере пирометрии являются инфракрасные пирометры или радиометры, в которых взят за основу метод радиационной пирометрии. Они более чувствительны, хотя менее точны, находят все длины волн видимого света. Их технические характеристики определяются:

  • оптическим разрешением;
  • диапазоном определяемых температур;
  • измеряемым разрешением;
  • быстротой действия;
  • точностью измерений;
  • коэффициентом излучения (переменный – фиксированный);
  • способом нацеливания (прицел оптический или лазерный).
Читайте также:  Станок для дрели для вертикального сверления

Чтобы получить точную величину теплового состояния исследуемого объекта, пользователь должен всего лишь навести аппарат на объект и нажать на кнопку. Тепловой луч фокусируется системой при помощи оптики и попадает на первичный термический конвертер. Электрический сигнал, который образуется на выходе, пропорционален температуре исследуемого объекта. Изменённый в электронном преобразователе (вторичном термическом конвертере), этот сигнал обрабатывается измерительно-счётным устройством и подаётся в виде цифрового результата на дисплей.

Измерения могут проводиться на любом расстоянии. Однако не следует забывать о погрешностях, которые могут возникнуть в случае несоответствия прозрачности среды или площади измеряемого пятна. Если диаметр пятна измерительного прибора меньше измеряемого предмета, то расстояние до объекта не влияет на точность измерений. Когда же диаметр пятна превосходит величину объекта, прибор может принимать излучения окружающих предметов, что снижает результативность его температурных показателей.

Визуализация температурных величин может выражаться в текстово-цифровом варианте, когда на дисплей выводятся показатели температуры в градусах, и графическим методом, когда элемент наблюдения виден в разложенном спектре температур (высокой, средней и низкой), выраженных различными цветами.

Бесконтактные пирометры различают по температурному диапазону на низко- и высокотемпературные. Низкотемпературные предназначены для измерения температур тел даже в области отрицательных значений. Высокотемпературные бесконтактные термометры используются в случаях, когда накал сильно нагретых предметов нельзя оценить «на глаз». Их возможности сильно смещены в сторону верхних границ измерений.

Пирометрия в нашей жизни

Современное производство контрольно-измерительных приборов может предложить покупателю пирометры для измерения температуры бесконтактным методом — стационарные и переносные.

Переносные пирометры часто предназначены для работы в тяжёлых промышленных и климатических условиях. Они обладают большим оптическим разрешением, что даёт возможность мониторинга теплового состояния объектов величиной от 5 мм. Пиротермометры переносные могут использоваться в любой промышленной сфере, как для контроля температуры, так и для отслеживания сложных технологических циклов, связанных с определёнными температурными режимами. Как правило, датчики стационарных пиротермометров имеют выход на ПК.

Обычно их применяют:

  • в тепловой энергетике;
  • в электроэнергетике;
  • на железнодорожном транспорте;
  • в пожарной безопасности и контроле;
  • в лабораторных исследованиях;
  • с целью сканирования холодных и горячих точек;
  • для контроля температур труднодоступных для человека объектов;
  • для определения температур объектов, пребывающих в движении;
  • в мониторинге систем кондиционирования, вентиляции и отопления.

Стационарные пирометры предназначены для эксплуатации в крупной промышленности, с целью непрерывного контроля за технологическим процессом в производстве металлов и пластиков. Их устанавливают там, где трудно или невозможно использовать контактные датчики температуры по соображениям безопасности персонала.

Областью их применения являются:

  • металлообработка;
  • металлургия, сталелитейное производство;
  • нефтеперерабатывающая отрасль;
  • керамическое и стекольное производство;
  • производство цемента.

Пирометры для измерения температуры бесконтактным методом в теплоэнергетике необходимы для точного и быстрого измерения температур в местах, где неэффективны другие способы измерений.

В электроэнергетике эти аппараты применяют для оценки нагрузки на кабельные линии, трансформаторы, качества теплоизоляции бойлеров, котлов, с целью контроля за пожарной безопасностью. Используют их также для контроля за температурой букс, важных узлов грузовых и пассажирских вагонов на железной дороге.

В металлообрабатывающей промышленности пирометры контролируют температуры прокатных станов, печей.

В строительстве пирометры определяют порывы в теплоизоляционных оболочках на теплотрассах, потери тепла в зданиях.

Способность пирометров реагировать на изменения инфракрасных излучений успешно используется для охраны зданий в датчиках движения.

При грузоперевозках они осуществляют контроль за хранением пищевых продуктов.

Благодаря компактности, удобству в эксплуатации и невысокой стоимости пиротермометры нашли своё место даже в быту. С их помощью можно измерить температуру тела, степень нагрева приготовляемых блюд, кухонной посуды.

Применяются достижения пирометрии и в космонавтике с целью контроля за опытами.

Отправить ответ

  Подписаться  
Уведомление о
Adblock
detector