Эжекция и инжекция отличия

Глубокое залегание водоносного слоя – распространенная проблема, хорошо знакомая многим владельцам земельных участков. Обычное поверхностное насосное оборудование либо вовсе не может обеспечить дом водой, либо подает ее в систему слишком медленно и со слабым напором.

Такая проблема требует скорейшего разрешения. Согласитесь, покупка нового насоса – мероприятие затратное и не всегда финансово оправданное. Разрешением такой ситуации может стать эжектор для насосной станции водоснабжения.

Мы подскажем вам, как выбрать подходящий агрегат и установить его без помощи специалистов. А также приведем пошаговый инструктаж по изготовлению и подключению самодельного эжектора. Все этапы работ сопровождаются наглядными фотографиями.

Принцип действия эжектора

Чем глубже находится вода, тем сложнее ее поднять на поверхность. На практике, если глубина скважины более семи метров, поверхностный насос справляется со своими задачами с трудом.

Разумеется, для очень глубоких скважин уместнее приобрести высокопроизводительный погружной насос. Но с помощью эжектора можно улучшить характеристики поверхностного насоса до приемлемого уровня и со значительно меньшими затратами.

Эжектор – устройство небольшое, но очень эффективное. Этот узел имеет относительно простую конструкцию, его можно даже изготовить самостоятельно из подручных материалов. Принцип работы основан на том, чтобы придать потоку воды дополнительное ускорение, что позволит увеличить количество воды, поступающей из источника за единицу времени.

Особенно удобно это решение тем, кто собирается установить или уже установил насосную станцию с поверхностным насосом. Эжектор позволит увеличить глубину забора воды до 20-40 метров.

Следует также отметить, что приобретение более мощного насосного оборудования приведет к заметному увеличению расхода электроэнергии. В этом смысле эжектор принесет заметную выгоду.

Эжектор для поверхностного насоса состоит из следующих элементов:

  • всасывающая камера;
  • смесительный узел;
  • диффузор;
  • зауженное сопло.

Работа устройства основана на принципе Бернулли. Он гласит, что если скорость движения потока увеличивается, вокруг него создается область с низким давлением. Таким образом достигается эффект разрежения. Вода поступает через сопло, диаметр которого меньше, чем размеры остальной конструкции.

Небольшое сужение придает потоку воды заметное ускорение. Вода поступает в камеру смесителя, создавая внутри него область с пониженным давлением. Под влиянием этого процесса через всасывающую камеру в смеситель попадает поток воды, находящийся под более высоким давлением.

Вода в эжектор поступает не из скважины, а от насоса. Т.е. эжектор должен быть установлен таким образом, чтобы часть воды, поднятой с помощью насоса, возвращалась в эжектор через сопло. Кинетическая энергия этого ускоренного потока будет постоянно передаваться массе воды, которая всасывается из источника.

Таким образом будет обеспечено постоянное ускорение движения потока. Насосному оборудованию понадобится меньше энергии для транспортировки воды на поверхность. В результате его эффективность возрастет, как и глубина, с которой можно забирать воду.

Часть воды, добытой таким образом, по рециркуляционной трубе снова направляется в эжектор, а остальная – поступает в водопроводную систему дома. Наличие эжектора имеет еще один “плюс”. Он всасывает воду самостоятельно, что дополнительно страхует насос от работы вхолостую, т.е. от опасной для всех поверхностных насосов ситуации “сухого хода”.

Чтобы регулировать работу эжектора, используют обычный кран. Его устанавливают на трубе рециркуляции, по которой вода из насоса направляется на сопло эжектора. С помощью крана количество воды, поступающей на эжектор, можно уменьшить или увеличить, тем самым снизив или повысив скорость обратного потока.

Выбор: встроенный или внешний?

В зависимости от места установки различают выносные и встроенные эжекторы. Большой разницы в конструктивных особенностях этих устройств нет, но расположение эжектора все же влияет некоторым образом и на монтаж насосной станции, и на ее работу.

Итак, встроенные эжекторы обычно помещают внутри корпуса насоса или в непосредственной близости от него. В результате эжектор занимает минимум места, и его не придется отдельно устанавливать, достаточно выполнить обычный монтаж насосной станции или собственно насоса.

Кроме того, расположенный в корпусе эжектор надежно защищен от загрязнений. Разрежение и обратный забор воды производится прямо в корпусе насоса. Нет необходимости устанавливать дополнительные фильтры, чтобы защитить эжектор от засорения частицами ила или песком.

Однако следует помнить, что максимальную эффективность такая модель демонстрирует на небольших глубинах, до 10 метров. Насосы со встроенным эжектором рассчитаны на такие относительно неглубокие источники, их преимущество в том, что они обеспечивают отличный напор поступающей воды.

В результате этих характеристик хватает, чтобы использовать воду не только для бытовых нужд, но и для полива или выполнения других хозяйственных операций. Еще одна проблема – повышенный уровень шума, поскольку к вибрации работающего насоса добавляется звуковой эффект от воды, проходящей сквозь эжектор.

Если принято решение об установке насоса со встроенным эжектором, то придется позаботиться о шумоизоляции особенно тщательно. Насосы или насосные станции со встроенным эжектором рекомендуется устанавливать вне дома, например, в отдельном здании или в кессоне скважины.

Электродвигатель для насоса с эжектором должен быть более мощным, чем для аналогичной безэжекторной модели.

Выносной или внешний эжектор устанавливают на некотором расстоянии от насоса, и это расстояние может быть довольно значительным: 20-40 метров, некоторые специалисты даже считают приемлемым показатель в 50 метров. Таким образом, выносной эжектор можно поместить прямо в источнике воды, например, в скважине.

Читайте также:  Какой керхер выбрать для мойки авто

Разумеется, шум от работы эжектора, установленного глубоко под землей, уже не побеспокоит жильцов дома. Однако этот тип устройства следует подключать к системе с помощью рециркуляционной трубы, по которой вода будет возвращаться к эжектору.

Чем больше глубина установки прибора, тем более длинную трубу придется опустить в скважину или колодец.

Наличие еще одной трубы в скважине лучше предусмотреть на стадии проектирования устройства. Подключение выносного эжектора также предусматривает установку отдельного накопительного бака, из которого будет производиться забор воды для рециркуляции.

Такой бак позволяет уменьшить нагрузку на поверхностный насос, сэкономив некоторое количество энергии. Стоит отметить, что эффективность работы внешнего эжектора несколько ниже, чем у встроенных в насос моделей, однако возможность значительно увеличить глубину забора заставляет смириться с этим недостатком.

При использовании внешнего эжектора нет необходимости помещать насосную станцию непосредственно возле источника воды. Ее вполне можно установить в подвале жилого дома. Расстояние до источника может варьироваться в пределах 20-40 метров, на производительности насосного оборудования это не отразится.

Особенности монтажа устройства

Как уже упоминалось, установка эжектора, встроенного в насос особых проблем не доставляет, поскольку устройство уже находится в корпусе прибора. Поверхностный насос просто подключают к водоподающему шлангу с одной стороны, а также к системе водопровода – с другой стороны.

Если же он используется в составе насосной станции, то насос соединяют с гидроаккумулятором посредством специального штуцера на пять выходов. Кроме того, насос необходимо будет подключить к контактам реле давления, чтобы обеспечить его автоматическое включение и отключение.

Перед включением поверхностного насоса его обязательно следует залить водой через предусмотренное для этого заливочное отверстие. Нельзя включать такое оборудование без воды, оно может сгореть. Если монтаж насоса выполнен правильно, эжектор будет работать без перебоев.

Но установка выносного эжектора производится по более сложной схеме. Для начала необходимо будет установить трубу, которая обеспечит обратный поток воды от накопителя к эжектору. На всасывающий отдел эжектора устанавливают обратный клапан. За ним следует поставить сетчатый фильтр, который защитит устройство от засорения.

Сверху на трубе рециркуляции необходимо установить регулировочный кран, чтобы регулировать количество воды, которая направляется к эжектору. Этот узел не является обязательным, но может существенно улучшить ситуацию с напором воды в доме.

Чем меньше воды будет возвращаться к эжектору, тем больше ее останется для водопроводной системы дома.

Таким образом можно влиять на напор воды в водопроводе. При его недостатке следует немного закрутить регулировочный кран на обратной магистрали.

Если же напор слишком большой и создает ненужную нагрузку на водопроводную систему, имеет смысл направить к эжектору большее количество воды, чтобы повысить эффективность работы насосного оборудования.

Некоторые промышленные модели эжекторов уже снабжены системой такой регулировки. В инструкции, которая прилагается к прибору, обычно подробно описан порядок настройки работы эжектора.

Использование самодельного внешнего варианта

Встроенный эжектор обычно приобретают одновременно с насосом, а вот внешнюю модель очень часто изготавливают своими руками.

Полезно будет рассмотреть процесс создания и порядок подключения такого устройства. Для того, чтобы сделать эжектор, понадобятся такие детали, как тройник с внутренними резьбовыми соединениями, штуцер, фитинги, отводы, муфты и т.п.

Собственноручная сборка эжектора

Собирают устройство следующим образом:

  1. Соединяют нижнюю часть тройника со штуцером так, чтобы патрубок выхода находился вверху, а штуцер с меньшим диаметром оказался внутри эжектора.
  2. Затем нужно доработать конструкцию, спилив узкую часть штуцера, если она выступает из тройника.
  3. Если штуцер оказался слишком коротким, его наращивают, используя полимерную трубку.
  4. На верхнюю сторону тройника навинчивают переходник с наружной резьбой.
  5. К другому концу переходника с помощью фитинга присоединяют водопроводную трубу ПВХ.
  6. Теперь к нижней стороне тройника, в которую уже вставлен узкий штуцер, следует присоединить отвод в виде уголка.
  7. К этому отводу присоединяют трубу, по которой будет поступать обратный поток воды к эжектору.
  8. К боковому патрубку тройника присоединяют еще один уголок.
  9. К этому уголку с помощью цангового зажима присоединяют трубу, по ней будет всасываться вода из скважины, колодца и т.п.

Расстояние между краем тройника и штуцера должно составлять примерно 2-3 мм. Это обеспечит создание области разрежения с необходимыми характеристиками. Для закрепления рециркуляционной трубы используют обжимную гайку.

Получается, что к внутренней резьбе нижнего патрубка тройника присоединяют одновременно два элемента. Один из них (штуцер) находится внутри тройника, а второй (уголок) – снаружи. Чтобы оба они поместились на одном резьбовом соединении, следует срезать часть резьбы штуцера.

Разумеется, все резьбовые соединения должны быть уплотнены и загерметизированы. Чаще всего для этого используют ФУМ ленту. Иногда для подключения эжектора к насосной станции применяют не металлопластиковые трубы, а конструкции из полиэтилена.

Для их монтажа следует использовать особые обжимные элементы, а цанговые зажимы, которые хороши для металлопластика, в этой ситуации не подойдут.

Порядок подключения труб

О том, с помощью каких именно труб будет подключен выносной эжектор, следует подумать заранее. Полиэтиленовые конструкции хорошо гнутся при нагреве, что позволяет обойтись без уголков при подключении эжектора. Трубу просто сгибают в подходящем месте и под нужным углом, а затем присоединяют к эжектору.

Итак, устройство имеет три выхода, к каждому из которых следует подключить соответствующую трубу. Сначала обычно устанавливают трубу, через которую будет выполняться забор воды из источника. Она присоединяется к боковому выходу из эжектора.

Читайте также:  Что можно сделать из блока питания компьютера

На конце этой трубы в обязательном порядке устанавливается обратный клапан, а также сетчатый фильтр. Эта труба должна быть достаточно длинной, чтобы опуститься глубоко под воду. Но не стоит производить забор воды у самого дна источника, поскольку это может привести к засорению эжектора, даже несмотря на наличие фильтра.

Затем можно присоединить трубу к нижнему концу эжектора, в котором установлен зауженный штуцер. Это магистраль, по которой производится рециркуляция воды. Второй конец этой трубы следует подключить к емкости, из которой будет отбираться вода для создания обратного потока.

Третья труба – это обычная водопроводная магистраль. Одним концом она монтируется на верхний патрубок эжектора, а второй присоединяют к поверхностному насосу. Следует помнить, что диаметр трубы, по которой выполняется забор воды из источника, должен превышать размеры трубы, по которой вода подается в эжектор.

Если на подаче использована дюймовая труба, то для всасывания рекомендуется брать трубу на четверть дюйма больше. После того, как все соединения выполнены, эжектор опускают в воду.

Перед первым пуском системы ее необходимо заполнить водой. Насос заливают через специальное отверстие. Трубы, ведущие к эжектору, также необходимо залить водой.

Стартовый запуск и дальнейшая эксплуатация

Первичный запуск насосной станции рекомендуется выполнять по следующей схеме:

  1. Залить воду в насос через специальное отверстие.
  2. Перекрыть кран, по которому вода поступает из насосной станции в водопроводную систему.
  3. Включить насос примерно на 10-20 секунд и сразу отключить.
  4. Открыть кран и стравить часть воздуха из системы.
  5. Повторять цикл кратковременных включений/отключений насоса в сочетании со стравливанием воздуха до тех пор, пока трубы не заполнятся водой.
  6. Снова включить насос.
  7. Дождаться заполнения гидроаккумулятора и автоматического отключения насоса.
  8. Открыть любой водопроводный кран.
  9. Подождать, пока вода вытечет из гидроаккумулятора, и насос включится в автоматическом режиме.

Если при пуске системы с эжектором вода не пошла, возможно, в трубы каким-то образом просачивается воздух, или же первоначальная заливка водой не была выполнена правильно. Имеет смысл проверить наличие и состояние обратного клапана. Если его нет, вода просто будет выливаться в скважину, а трубы останутся пустыми.

Эти моменты следует учесть и при использовании насосной станции с эжектором, которая запускается после длительного хранения. Обратный клапан, целостность труб и герметичность соединений лучше всего проверить сразу же.

Если все в порядке, а вода не поступает, нужно проверить напряжение, поступающее к насосной станции. Если оно слишком низкое, насос просто не может работать в полную мощность. Следует наладить нормальное электропитание оборудования, и проблема исчезнет.

Если эжектор нужен для улучшения напора воды в системе, а не для увеличения глубины забора воды, можно использовать описанную выше модель самодельного эжектора.

Но его не нужно погружать в воду, можно разместить в удобном месте возле поверхностного насоса. В этом случае эжектор будет работать примерно так же, как и встроенная модель промышленного производства.

Выводы и полезное видео по теме

В этом видеоматериале подробно рассмотрен вопрос глубины всасывания поверхностного насоса и варианты решения проблемы с помощью эжектора:

Здесь наглядно продемонстрирован принцип работы эжектора:

Эжектор – несложное, но очень полезное устройство. Это удобный и практичный способ улучшить характеристики работы насосного оборудования в частном доме. Но монтаж эжектора, особенно выносной модели, должен быть выполнен правильно, только так можно обеспечить заметное повышение напора воды.

Всем заинтересованным в вопросе выбора и подключения эжектора, предлагаем присоединится к обсуждениям и оставлять комментарии к статье. Форма для комментариев находится ниже.

ИНЖЕКЦИЯ (а. injection; н. Injection, Einspritzung; ф. injection; и. inyeccion) — процесс непрерывного смешения двух потоков веществ и передачи энергии инжектирующего (рабочего) потока инжектируемому с целью его нагнетания в различные аппараты, резервуары и трубопроводы. Смешиваемые потоки могут находиться в газовой, паровой и жидкой фазах и быть равнофазными, разнофазными и изменяющейся фазности (например, пароводяные). Применяемые для инжекции струйные аппараты (насосы) называются инжекторами. Явление инжекции известно с 16 в. С начала 19 в. процесс инжекции получил промышленное использование для усиления тяги в дымовых трубах паровозов.

Основы теории инжекции были заложены в работах немецкого учёного Г. Цейнера и английского учёного У. Дж. М. Ранкина в 70-е гг. 19 в. В СССР, начиная с 1918, значительный вклад в развитие теории и практики инжекции внесли А. Я. Милович, Н. И. Гальперин С. А. Христианович, Е. Я. Соколов, П. Н. Каменев и др. Смешение рабочего и инжектируемого потоков с разными скоростями сопровождается значительной потерей кинетической энергии на удар и превращением её в тепловую, выравниванием скоростей, повышением давления инжектируемого потока. Инжекция описывается законами сохранения энергии, массы и импульсов. При этом потеря энергии на удар пропорциональна квадрату разности скоростей потоков в начале смешения. При необходимости быстрого и тщательного перемешивания двух однородных сред массовая скорость рабочего потока должна превышать массовую скорость инжектируемого в 2-3 раза. В некоторых случаях при инжекции наряду с гидродинамическим происходит и термический процесс с передачей рабочим потоком инжектируемому тепловой энергии, например при нагревании жидкостей паром с интенсивным перемешиванием сред — жидкости и конденсата.

Принцип инжекции заключается в том, что давление Р1 и средняя линейная скорость и1 инжектирующего (рабочего) потока газа или жидкости, движущегося по трубе, в суженном сечении меняются. Скорость потока возрастает (и2>и1), давление (Р2 Рубрики: Техника и технологии

Чудо — Рациональность — Наука — Духовность

Читайте также:  Скребковые конвейеры для зерна

Ж ИЗНЕННЫЙ ПУТЬ — это путь исследователя, постигающего тайны мироздания

Наш сайт доступен

52 языках

Если вам понравился сайт, то поделитесь со своими друзьями этой информацией в социальных сетях, просто нажав на кнопку вашей сети.

может быть ваша реклама —> —>.

Эжекции эффект Увлечение потоком с более высоким давлением, движущимся с большой скоростью, среды с низким давлением

Эффект эжекции заключается в том, что поток с более высоким давлением, движущийся с большой скоростью, увлекает за собой среду низкого давления. Увлеченный поток называется эжектируемым. В процессе смешения двух сред происходит выравнивание скоростей, сопровождающееся, как правило, повышением давления.

Основная особенность физического процесса заключается в том, что смешение потоков происходит при больших скоростях эжектирующего (активного) потока.

Так как коаксиальные струи распространяются не в атмосфере с постоянным давлением, а ограничены стенками канала или камерами смешения, среднее осевое количество движения, осредненное по массовому расходу, не сохраняется постоянным, и статическое давление может изменяться вдоль оси х . Пока скорость эжектирующего потока больше скорости эжектируемого потока в камере смешения постоянного радиуса, будет иметь место увеличение давления в направлении х , где ядра поглощаются благодаря быстрому смешению сдвиговых слоев (ядро — та часть прямого потока, которая входит в канал).

Процесс смешения потоков в камере эжектора схематически иллюстрирована на рис. 1.

Смешение потоков в камере эжектора

В сечении 0 — 0 , совпадающем с началом камеры смешения, средние скорости рабочего (эжектирующего) потока V E и всасываемого (эжектируемого) потока V EJ являются исходными. За этим сечением расположен начальный участок смешения потоков, где по центру сохраняется ядро скорости рабочего потока, не охваченное процессом смешения. В пределах ядра скорости потока постоянны и равны средней скорости истечения из сопла V E .

Аналогичное ядро постоянных скоростей можно наблюдать в пределах кольцевой области, охватываемой всасываемым потоком. Между этими областями постоянных скоростей расположена зона турбулентного обмена, где скорости потоков постоянно меняются от V E в ядре рабочего потока до V EJ в зоне всасываемого потока. Начальный участок заканчивается в створе, где выклинивается ядро рабочего потока.

Когда точки выклинивания ядра скорости рабочего потока и ядра скорости всасываемого потока не совпадают, между начальным и основным участком появляется переходный участок, в пределах которого имеется только одна из зон постоянных скоростей.

Смешение потоков в камере эжектора сопровождается изменениями осредненного давления вдоль проточной части. По мере выравнивания профиля поперечного распределения скоростей потоков и уменьшения от сечения к сечению средней скорости суммарного потока происходит повышение давления.

Повышение давления в зоне смешения канала постоянного радиуса без учета поверхностного трения о стенку может быть определено по формуле:

,

где р 0 — давление в сечении 0-0;

р 1 — давление в сечении 1-1 (рис. 1);

r — плотность вещества ;

V E — скорость рабочего потока;

V A — скорость всасываемого потока;

А E — отношение площадей сопла и камеры (относительное расширение).

Эффект проявляется, например, в цилиндрической трубе при наличии не менее двух струйных течений с различными скоростями.

Вещественный поток принимает форму канала или камеры, в которой происходит смешение потоков.

Время инициации (log t o от -1 до 1);

Время существования (log t c от 1 до 9);

Время деградации (log t d от -1 до 1);

Время оптимального проявления (log t k от 1 до 6).

Технические реализации эффекта

Техническая реализация эффекта эжекции

Для технической реализации эффекта эжекции достаточно направить поток воздуха от домашнего пылесоса в приемный патрубок системы, изображенной на рис. 2.

Простейшая эжекционная система

Простейшая эжекционная система входит в комплектацию советских бытовых пылесосов

1 — трубка с потоком эжектирующего воздуха;

2 — патрубок подвода эжектируемой жидкости;

3 — резервуар с эжектируемой жидкостью;

4 — поток воздуха;

5 — конус распыления эжектируемой жидкости.

Бернуллиевское разрежение в потоке воздуха вытягивает жидкость (водный окрашенный раствор) из резервуара, и поток воздуха распыляет ее путем отрыва капель с торца патрубка подвода. Перепад высоты между уровнем жидкости в резервуаре и точкой распыления (торцом патрубка) составляет 10 — 15 см. Внутренний диаметр трубки с газовым потоком — 30 — 40мм, патрубка подвода — 2 — 3мм.

Повышение давления эжектируемого потока без непосредственной механической энергии применяется в струйных аппаратах, которые используются в различных отраслях техники: на электростанциях — в устройствах топливосжигания (газовые инжекционные горелки); в системе питания паровых котлов (противокавитационные водоструйные насосы); для повышения давления из отборов турбин (пароструйные компрессоры); для отсоса воздуха из конденсатора (пароструйные и водоструйные эжекторы); в системах воздушного охлаждения генераторов; в теплофикационных установках; в качестве смесителей на отопительных водах; в промышленной теплотехнике — в системах топливоподачи, горения и воздухоснабжения печей , стендовых установках для испытания двигателей; в вентиляционных установках — для создания непрерывного потока воздуха через каналы и помещения; в водопроводных установках — для подъема воды из глубоких скважин; для транспортирования твердых сыпучих материалов и жидкостей.

1. Физика. Большой энциклопедический словарь.- М.: Большая Российская энциклопедия, 1999.- С.90, 460.

2. Новый политехнический словарь.- М.: Большая Российская энциклопедия, 2000.- С.20, 231, 460.

  • эжекция
  • захват
  • поток
  • скорость потока
  • турбулентный погранслой
  • смешивание
  • давление

«>

Отправить ответ

  Подписаться  
Уведомление о
Adblock
detector