Как отличить силумин от алюминия

Примечания: 1. Определяет следующие виды литья: С — земля; О — оболочковые формы; В — модели выплавляемым; К — кокили; Д — литье под давлением; М — сплав при литье модифицируется. 2. Обозначает следующие виды термической обработки: Т4 — закалка; Т5 — закалка и частичное старение; Т6 — закалка и полное старение до максимальной твердости

Рис. 2.1. Диаграмма состояния сплавов Al-Si и схема влияния модифицирования на кристаллизацию в системе Аl — Si [36]: 1 — без модификации, 2 — после модификации

Микроструктура модифицированного силумина состоит из светлых участков твердого раствора б и мелкодисперсной эвтектики б + Si (рис. 2.2, б, г)

Рис. 2.2. Микроструктура (а, б) и схема структуры (в, г) силумина [13, 34]: а в — к модификации; б, г — после модификации

Микроструктура и свойства сплава АЛ2

Сплав АЛ2 — силумин с содержанием кремния, близким к эвтектическим (10-13%). Эвтектика в системе А1 — Cu образуется при содержании кремния 11,6% и состоит из кристаллов твердого раствора кремния и алюминия и кристаллов кремния. Сплав АЛ2 зависимости от содержания кремния может состоять из эвтектики и небольшого количества избыточной фазы. Так, в сплаве с 12% Cu (заэвтектических) структура состоит из кристаллов кремния (белого цвета) и эвтектики грубого строения, в которой кремний находится в виде больших игл. Силумин с такой структурой имеет низкие механические свойства. Если в жидкий сплав перед его кристаллизацией ввести небольшое количество (0,01 — 0,02%) натрия, то это приводит к измельчению включений кремния и повышения механических свойств силумина. Этот процесс искусственного регулирования размеров и формы кристаллов называется модифицирования. При модифицировании точка эвтектики смещается к более высоким концентрациям кремния и эвтектический сплав АЛ2 становится доэвтектических. Структура его состоит из первичных дендритов твердого раствора (светлый фон) и мелкой (дисперсной) эвтектики Cu (темный фон). Сплав АЛ2 термической обработке не подвергается.

Медные силумины, кроме алюминия содержат 4 — 22% кремния, 1-8 меди, а также 0,2-1,3 Мg, 0,2-0,8 Мп и 0,1-0, 3% Те. По сравнению с силуминами они немного хуже литейные свойства, но лучшие механические. Их марки АК5М, АК8М, АК12М2МгН и др. Числа после букв К, М, Н и Мг показывают среднюю массовую долю (в%) кремния, меди, никеля и марганца соответственно. Когда число после буквы отсутствует, массовая доля элемента составляет около 1%. Среди медных силуминов важно сплав марки АК8М, содержащий около 8% Cu, 1% Сu, а также Мg, Mn, Ti (0,3-0,4% каждого). Среди медных силуминов отдельного внимания заслуживает сплав марки АК8М, содержащий около 8% Si, 1% Сu, а также Мg, Mn, Ti (0,3-0,4% каждого). Медь и магний, имеют переменную растворимость в алюминии, способствуют укреплению сплава при термообработке: закалка и искусственного старения. Сплав АК8М имеет хорошую свариваемость и коррозионную стойкость. Из медных силуминов изготавливают корпуса компрессоров, головки и блоки цилиндров автомобильных двигателей.

Сплав АЛ6 — низкокремнистый силумин, содержащий 4,5-6,0% Si с добавками меди. Основой этого силумина является система А1 — Si — Сu (алюминий — кремний — медь). Микроструктура сплава АЛ6 состоит из кристаллов твердого раствора, двойной и тройной эвтектики. Через небольшое количество эвтектической составляющей отливки из сплава АЛ6 не поддаются упрочняющей термической обработке.

Сплав АЛ9 — низкокремнистый силумин (6,0-8,0% Cu) с добавками магния. Основой магниевых силуминов является система А1 — СИ — Мg. Основными структурными составляющими являются первичные кристаллы с двойной эвтектикой, а также вторичные кристаллы Мg2Sі, выделяемых из твердого раствора. При неравновесной кристаллизации выделяется также тройная эвтектика. Сплав АЛ9 подвергается закалке и старению. В структуре закаленного сплава присутствуют скоагулированные частицы кремния эвтектического происхождения и компактные включения нерастворимого составляющей (А1, Mn, Fe, Cu). Силицид Мg2Sи полностью переходит в твердый раствор и обеспечивает укрепление сплава при следующем старении.

Термическая обработка алюминиевых литейных сплавов — силуминов

Термическая обработка алюминиевых литейных сплавов (силуминов) состоит из закалки и искусственного старения. Однако продолжительность выдержки при нагреве под закалку увеличивается по сравнению с дюралюминия в 4-8 раз и для сплава АЛ4 необходимо 2-4 часа. Это связано с тем, что силумины в обычных условиях кристаллизации приобретают крупнозернистой структуры с крупными включениями упрочняющей фазы, при нагреве под закалку очень медленно переходят в твердый раствор. Охлаждение силуминов при закалке допускается с меньшей скоростью, чем для дюралюминия. Их можно закаливать в горячей воде. При старении (температура 180 ° С) лучшие механические свойства силумин АЛ4 получает после 10-15 ч выдержки.

Сплавы АЛЗ, АЛ5 и АЛ6 — низкокременистые силумины, дополнительно легированные медью (а также в небольших количествах Mg и Мп) имеют худшие литейные, но лучшие механические свойства, чем обычный силумин. Сплав АЛ11 — цинковистый силумин; присадка цинка в таком высоком проценте улучшает литейные свойства; сплав этот применяется для изготовления сложных отливок.

Алюминиево-медные сплавы АЛ12 и АЛ7 — существенно отличаются друг от друга. Сплав с 4 — 5% Cu, по составу близок к дуралюминию, обладает высокими механическими, но плохими литейными свойствами. С этого сплава изготавливают небольшие отливки, подвергающихся значительным механическим нагрузкам.

Сплав АЛ12, напротив, высокие литейные и низкие механические свойства, однако, по обоим этим показателям он уступает обычному силумину и в настоящее время его применение неоправданно.

Наконец, сплав системы А1-Mg, так называемый магналий представлен маркой АЛ8. Сплав имеет высокую механическую прочность по сравнению с другими алюминиевыми литейными сплавами, наименьший удельный вес, высокие антикоррозионные свойства, но относительно технологических качеств (литейных свойств) он уступает другим сплавам.

Таким образом, имеющаяся номенклатура сплавов позволяет выбрать для каждого конкретного назначения оптимальную марку. При этом выборе следует учесть и оценить положительные и отрицательные показатели сплава — его технологические, механические, эксплуатационные и другие свойства.

Сплав АЛ12 полученный на основе системы А1 — Сu (алюминий- медь). Он содержит 10-14% меди и по механическим свойствам уступает сплава АЛ2. Из рис. 2.3 видно, что сплав АЛ12 является доэвтектичным и при комнатной температуре в равновесном состоянии должен иметь структуру, состоящую из кристаллов твердого раствора и эвтектики.

Рис. 2.3. Диаграмма состояния сплавов Al — Сu [36]

Однако, при исследовании микроструктуры сплава АЛ12 видны светлые зерна твердого раствора, по границам которых наблюдаются отдельные кристаллы фазы СuАl2 темного цвета. Кристаллы твердого раствора эвтектики слились с избыточным твердым раствором в одно целое. Это явление выражено тем сильнее, чем меньше в сплаве эвтектики и чем медленнее происходит ее образования.

Сплав АЛ12 имеет высокие литейные, но низкие механические свойства, поэтому применяется редко. Термообработке сплав не поддается.

Читайте также:  Измельчитель резины в крошку своими руками

Сплав АЛ7 также полученный на основе системы А1 — Сu (алюминий — медь), но содержание меди в нем меньше, чем в АЛ12 и составляет 4-5%. Он обладает высокими механическими и плохими литейными свойствами. Поэтому его применяют для изготовления небольших отливок. В структуре сплава АЛ7 в связи с присутствием примесей железа и кремния, кроме упрочняющей фазы СuАl2, содержатся другие нерастворимые фазы, образующихся вместе с фазой интерметаллидных оболочек по границам дендритов. Сплав АЛ7 подвергается упрочняющей термообработке: закалке с нагревом до 575°С (выдержка 10 — 15 часов) в горячей воде и искусственному старению при 150°С (выдержка 2-4 ч). В тех случаях, когда не требуется максимальной прочности, но важно сохранить повышенную пластичность, ограничиваются одним закалкой (без старения).

Сплав АЛ8 полученный на основе системы Аl — Мg (алюминий — магний). Он содержит 9,5-11% Мg и называется Магналии, который имеет высокие механические и антикоррозионные свойства, но низкие литейные свойства.

Структура литого сплава АЛ8 состоит из твердого раствора (светлый фон) и незначительного количества эвтектики, точнее, фазы Мg2А13, Расположенной по границам твердого раствора. Согласно состоянию в сплаве АЛ8 эвтектика не должна быть, однако микроанализ указывает на ее присутствие. Это связано с повышенной скоростью охлаждения, что приводит к неравновесной кристаллизации сплава, когда точка предельной растворимости смещается влево. Фаза Мg2Аl3 хрупкая и выделяется в форме больших скоплений, образуют сплошную сетку. Для устранения гетерогенной структуры сплав АЛ8 подвергают закалке при 430 ° С (с выдержкой 15-20 ч) в горячей воде и в таком состоянии используют. Структура после закалки состоит из однородных зерен твердого раствора.

Для отливок в форме опорных частей строительных конструкций рекомендуется применять сплав марки АЛ8, содержащий от 10 до 12% магния. Закалка этого сплава применяется с целью получения однородной структуры пресыщенного твердого раствора. В закаленном состоянии сплав обладает высокой коррозионной стойкостью. Стареет этот сплав при повышенной температуре. Старение для этого сплава вредно, поскольку после старения резко снижается пластичность и коррозионная стойкость.

Рис. 2.4.. Фрагмент диаграммы состояния сплавов Al — Mg [36]

Из деформируемых сплавов путем горячей или холодной обработки давлением, изготавливают различные профили (уголки, тавры, двутавры и т.д.), письма, провода, трубы, плиты, которые широко применяются в строительстве и технике для изготовления различных конструкций, а также полуфабрикаты для различных деталей машин.

В зависимости от способа повышения механических свойств, алюминиевые деформируемые сплавы делятся на сплавы, не укрепляются термической обработкой, и сплавы, укрепляются термической обработкой.

К алюминиевым сплавам, которые не укрепляются термообработкой, относятся сплавы двух систем: А1 — Мn (АМц) и А1 — Мg (АМг), к сплавам, укрепляются термообработкой, в основном А1 — Сu — Мg (дюралюминий) и системы А1 — Мg — Si.

Алюминиевые деформируемые сплавы, не укрепляются термической обработкой.

К сплавам, не укрепляются термической обработкой, главным образом относятся сплавы алюминия с марганцем (АМц) и алюминия с магнием (АМг).

Структура сплавов, не укрепляются термической обработкой, состоит из однородного твердого раствора меди, магния марганца и других элементов в алюминии или твердого раствора и частиц второй фазы: Аl6 (Mn, Fe), FеА13 нерастворимых в алюминии при повышении температуры. Эти сплавы обладают невысокой прочностью, высокой пластичностью и коррозионной стойкостью. Наличие второй фазы несколько снижает коррозионную стойкость.

Al-Мn сплавы. Содержание марганца в этих сплавах не превышает 1,6%. При содержании марганца до 0,3% он находится только в твердом растворе. При большем количестве он частично (до 0,3%) будет находиться в твердом растворе и частично в виде интерметаллидного соединения Аl6 (Mn, Fe), не растворяется в алюминии (рис. 2.3).

Микроструктура сплавов системы Аl — Мn (АМц). Из диаграммы состояния Аl — Мn (рис. 2.3) видно, что марганец с алюминием образуют химическое соединение Аl6Мn и эвтектику, содержащий 1,95% Мn при температуре 658,5 ° С. Для рассматриваемой части диаграммы характерные особенности:

а) очень небольшой температурный интервал кристаллизации первичного твердого раствора на основе алюминия;

б) достаточно высокая растворимость марганца в алюминии при эвтектической температуре, составляет 1,4%, и резкое уменьшение при 550-450 ° С.

Промышленный сплав АМц содержит от 1 до 1,6% Мn. Этот сплав является не двойным, а многокомпонентным и содержит постоянные примеси железа и кремния, которые значительно уменьшают растворимость марганца в алюминии.

Например, в чистом алюминии при 500°С растворяется 0,4% Mn, а в алюминии с 0,1% Fе и 0,65% Si-лишь 0,05% Мn. Соединение МnАl6 может растворять в себе железо. Эта фаза имеет форму больших пластинчатых кристаллов, резко ухудшают свойства сплавов АМц. При деформации литого металла наблюдается измельчение интерметаллидных включений.

В сплавах АМц с добавками кремния рядом с кристаллами образуется тройная фаза Т, представляет собой твердый раствор на основе соединения А110Мn2Si. Конечным видом термической обработки сплава АМц является рекристализационный отжиг.

Рис. 2.4. Диаграмма состояния сплавов Аl — Мn [36]

Al — Мg сплавы. Содержание магния в алюминиевых деформируемых сплавах колеблется от 2 до 7%. Магний с алюминием образует несколько интерметаллидных соединений: А13Мg4, Аl3Мg2 (рис. 2.4). В присутствии кремния образуется интерметаллидных соединение, обладающее переменной растворимостью в алюминии. При содержании магния в сплаве более 1,4% он находится частично в твердом растворе и частично в виде интерметаллидных соединений, растворимых в алюминии с повышением температуры. Поэтому сплавы, содержащие магния более 3%, могут укрепляться путем термической обработки, но эффект от укрепления будет невелик. К сплавам, которые термически не укрепляются, относятся также технический алюминий.

Укрепление этих сплавов достигается путем холодной обработки давлением.

Микроструктура сплава системы Аl — Мg (АМг). В сплаве системы Аl-Мg образуются химические соединения А13Мg2. Точка эвтектики соответствует 33% Мg. Растворимость магния в алюминии достаточно высока и составляет 17,4% при 448.°С и около 1,4% при комнатной температуре.

Сплавы системы Аl -Мg (АМг-2, АМг-3, АМг-4, АМг-5, АМГ-6) за исключением АМг-1 содержат дополнительно марганец, что вместе с алюминием образуют фазу А16Мn. Присутствие кремния способствует образованию в этих сплавах силицида магния. Если в сплавах содержатся железо, марганец и кремний, возможно образование соединения (Al, Fe, Si, Мn). Микроструктура сплава АМГ-6 после отжига состоит из твердого раствора, железомарганцевой фазы и фазы Мg2Si.

Цифры, стоящие за маркой, указывают на содержание магния или марганца в сплаве в целых долях процента; дополнительные буквы, расположенные после цифр, указывают на дополнительное легирование сплава: Т — титаном, В-ванадием. Так, например, сплав марки АМг6ТМ имеет следующий состав: магния около 6%, титана — 0,1%, остальное — алюминий. Поставляется после отжига (М) — мягкое состояние.

Сплавы в отожженном состоянии рекомендуется использовать для конструкций, изготавливаемых сгибанием и сваркой. Сплавы в закаленном состоянии не рекомендуется подвергать этим видам обработки, так как есть опасность образования трещин.

Читайте также:  Вакуум насос своими руками

Прочность сварных соединений алюминиево-магниевых сплавов достигает 92- 97% прочности основного металла. Относительная прочность сплава марки АМг6 по сравнению со сталью марки Ст. 3 составляет 1,9; по сравнению с легированной сталью марки 15ХСНД-1.38; марки 10ХСНД- 1,17.

Алюминиевые сплавы, деформируются, которые укрепляются термической обработкой.

Сплавы, укрепляются термической обработкой, поставляют заказчику в виде различного проката. Структура этих сплавов в отожженном состоянии состоит из твердого раствора легирующих элементов в алюминии и частиц второй фазы, растворяется в алюминии с повышением температуры. Эти фазы представляют собой твердый раствор алюминия в химическом соединении. Частицы второй фазы, растворенные в алюминии с повышением температуры, является укрепляющим фазой при термической обработке.

В равновесном (отожженном) состоянии при нормальной температуре структура алюминиево-медных сплавов, укрепляются термической обработкой, будет состоять из твердого раствора меди (магния, марганца и других элементов) в алюминии и большого количества избыточных кристаллов второй фазы.

Как видно из диаграммы состояния системы «алюминий — медь», в твердом растворе при нормальной температуре находится 0,5% меди. Другая медь (около 3,5%) будет находиться в виде фазы (дюралюминий марки Д1 содержит около 4% Сu), в которой около 55,4% меди.

Сплавы, термически укрепляются в зависимости от химического состава можно разбить на следующие группы.

Сплавы алюминий — магний — кремний с добавлением меди, марганца, хрома называют сплавами Авиаль (АВ; АК5). Укрепляющей фазой в этих сплавах является интерметаллидное соединение Мg2Si. Сплав марки АВ после закалки с температуры 515-525 ° С и естественного старения обладает высокой коррозионной стойкостью. После искусственного старения при 150-160°С в течение 6:00 сплав имеет максимальную прочность. Коррозионная стойкость при этом несколько снижается. Сплав имеет склонность к межкристаллитной коррозии, причем, эта склонность тем больше, чем выше содержание меди в сплаве. Сплав хорошо сваривается. Его рекомендуется применять для изготовления деталей, которым требуется высокая пластичность в холодном и горячем состоянии. К этой группе относится также сплав АК5, предназначенный для ковки и штамповки деталей сложной конфигурации в горячем состоянии.

Микроструктура и свойства сплава систем Аl-Мg-Si (Авиаль) менее легированные, чем дюралюминий. Промышленные сплавы Аl-Мg-Si типа Авиаль по своему химическому составу характеризуются некоторым избытком кремния по сравнению с теоретически необходимым для образования фазы Мg2Sи, поскольку при избытке кремния достигается более благоприятное сочетание прочности сплава и его пластичности. Сплав АВ имеет наибольшую прочность среди сплавов Аl-Мg-Si. После охлаждения в этих сплавах происходит распад твердого раствора с образованием фазы Мg2Si и в небольших количеств фаз (А12Сu) и Аl6Мn. Основной укрепляющей фазой в сплаве является фаза Мg2Si.

Алюминий подвергается закалке и искусственному старению.

Структура сплава после искусственного старения состоит из твердого раствора, вокруг которого размещаются темные включения фазы Мg2Si.

Термическая обработка алюминиевых сплавов заключается в их закалке и дальнейшем старении. Закалка основано на существовании переменной растворимости меди, магния и других элементов (Si, Мg, и др.) В твердом алюминии при повышении температуры. Целью закалки является получение пересыщенного твердого раствора нескольких легирующих элементов (меди, магния, кремния и других) в алюминии.

Закалки алюминиевых сплавов заключается в нагревании их до температуры, при которой легирующие элементы полностью или частично растворяются в алюминии, выдерживании при этой температуре и быстром охлаждении до низкой температуры (10-20 ° С). Скорость охлаждения при закалке должна обеспечить отсутствие распада твердого раствора в процессе охлаждения, то есть быть выше критической (Vкр). Значительная пресыщенность твердых растворов обусловливает их нестабильность, поэтому распад твердых растворов в закаленных сплавах является самовольным процессом.

Дюралюминий — химический состав, свойства, структура и термическая обработка.

Сплавы, тройной системы: алюминий — медь — магний с добавками марганца, кремния, называют сплавами дюралюминий. Эти сплавы укрепляются термообработкой и хорошо сочетают прочность и пластичность. Главными легирующими элементами дуралюмина является медь и магний. С понижением температуры от эвтектической с твердого раствора выделяется химическое соединение СuAl (Q-фаза), твердость которой 49 HRC. Наличие магния приводит к выделению S-фазы Аl2 (CuMg) твердостью 52 HRC. С увеличением до определенного предела концентрации магния прочность сплава возрастает. Марганец повышает коррозионную стойкость. С целью дополнительного повышения коррозионной стойкости дуралюминий наносят на их поверхность тонким слоем чистого алюминия. Кремний в дуралюминия следует рассматривать как примесь. Структура дуралюмина в равновесном состоянии состоит из твердого раствора и различных интерметаллических твердых фазах в том числе Q и S -фаз. Дуралюмины широко применяют в авиации, автомобилестроении, строительных конструкциях.

Марки дуралюминия обозначают буквой Д и числом, значит условный номер сплава, например Д16 (табл. 2.2). Укрепляющими фазами, растворяются в алюминии при нагревании, могут быть (А12Сu), S (А12СuМg), Т (А16СuМg4), Мg2Si, Мg2Аl3. Наличие той или иной упрочняющей фазы в сплаве зависит от содержания меди и магния в сплаве и от их количественного соотношения.

Микроструктура сплавов системы Аl-Сu-Мg с добавками марганца (дюралюминий)

Дюралюминий является многокомпонентным сплавом, но приближенно его можно рассматривать как сплавы системы Аl-Сu-Мg. Аl-Сu-Мg, вследствие предельной растворимости меди и магния в твердом алюминии, он значительно изменяется при понижении температуры. С увеличением содержания магния в сплаве последовательно образуются новые фазы: (А12Сu), S (А12СuМg), Т (А16СuМg4). Эти фазы при нагревании растворяются в твердом растворе и, выделяясь из пресыщенного твердого раствора, играют роль упрочняющих фаз при старении сплава.

Таблица 2.2. Химический состав дюралюминий (% масс.) [5]

Силуми́н — сплав алюминия с кремнием. Химический состав — 4-22 % Si, основа — Al, незначительное количество примесей Fe, Cu, Mn, Ca, Ti, Zn, и некоторых других. Некоторые силумины модифицируются добавками натрия или лития. Добавка всего 0,05 % лития или 0,1 % натрия позволяет увеличить содержание кремния в эвтектическом сплаве с 12% до 14 %. Сплавы Al-Si (силумины) обладают наилучшими [ источник не указан 501 день ] литейными свойствами. В двойных сплавах Al-Si эвтектика состоит из твёрдого раствора и кристаллов практически чистого кремния. В легированных силуминах (АК9ч) помимо двойной эвтектики имеются тройные и более сложные эвтектики. В двойных силуминах с увеличением содержания кремния до эвтектического состава снижается пластичность и повышается прочность.

Содержание

Маркировка [ править | править код ]

  • А — алюминий,
  • К — кремний,
  • ## — процентное содержание кремния в сплаве,
  • @@ — другие химические элементы, содержащиеся в сплаве (если имеются).

Встречается другая маркировка: АЛ##, где:

  • АЛ — алюминий литейный,
  • ## — номер сплава.

Наиболее распространённые марки:

  • АК12 — 12 % кремния, эвтектический сплав.
  • АК9 — 9 % кремния.
  • АК7Ц9 — 7 % кремния, 9 % цинка.

Механические свойства [ править | править код ]

Плотность силуминовых сплавов от 2,5 до 2,94 г/см 3 .
По сравнению с алюминием обладают бо́льшей прочностью и износоустойчивостью, но уступают в этом дюралям — сплавам алюминия с медью, магнием и марганцем. Материал хрупок, при обработке крошится без образования длинной гибкой стружки в отличие от алюминия и меди.

Читайте также:  Гильотина для резки металла зазор между ножами

Химические свойства [ править | править код ]

В отличие от дюралюминия, силумины устойчивы к коррозии во влажной атмосфере и морской воде, в слабокислой и щелочной среде.

Применение [ править | править код ]

Применяются для литья деталей в авто-, мото- и авиастроении (напр., картеров, блоков цилиндров, поршней), и для производства бытовой техники (теплообменников, санитарно-технических запорных арматур, мясорубок), в скульптурной технике, в дешёвых электропневматических репликах оружия, иногда изготовляют ключи.

Недостатком силумина является высокая пористость и грубая крупнозернистая эвтектика отливок, что сильно отражается на воспроизводимости (стабильности) прочностных свойств получаемых деталей. [1]

Немногие знают о существовании такого сплава как силумин, но большинство встречает его в виде различных изделий. Из него производят водопроводные краны, посуду и множество других металлических предметов. Так что же представляет собой этот сплав?

Силумин – сплав на основе алюминия и кремния. Большую часть, а именно около 90%, сплава составляет алюминий, остальную часть – кремний. Изготовление силумина очень похоже на производство дюралюминия, но в состав второго также входят медь, магний и марганец.

Главное отличие этого сплава от обычного алюминия заключается в том, что силумин обладает более высоким уровнем прочности.

Химические свойства

Несмотря на то, что к этой группе относят сплавы алюминия и кремния, следует отметить, что силумин может содержать в малом количестве множество других элементов. Состав сплава напрямую влияет на характеристики готовых изделий. Главное условие для причисления сплава к силуминам заключается в процентном соотношении кремния. Он должен составлять от 10% до 15%.

Благодаря тому, что алюминий составляет около 90%, структура силумина очень похожа на структуру алюминия. Невооруженным глазом отличить их практически невозможно.

Свойства силумина отличаются в зависимости от типа алюминиевого сплава. Различают два типа металлов этой группы:

  • нормальные силумины;
  • износостойкие.

Нормальная группа отличается содержанием кремния в районе 12%. Прочность сплавов этой группы находится не на высоком уровне, но они имеют другие преимущества. В первую очередь – простота обработки и отличные литейные свойства. Отсутствие различных примесей делает этот тип силумина нейтральным к воздействию агрессивной среды и различных химических веществ.

Износостойкие сплавы содержат в составе около 20% кремния. Такой состав придает силумину повышенную прочность, значительно превышающую прочность алюминия. Но обработка изделий из этого сплава более сложная и требует приложения больших усилий.

Характеризуя химические свойства силумина, следует отметить, что они практически не отличаются от свойств алюминия. Лишь немного изменяются в зависимости от процентного соотношения различных добавок. В первую очередь, добавления кремния к алюминию напрямую влияет на физические свойства.

Физические свойства

Такой сплав как силумин по физическим свойствам очень часто сравнивают с нержавеющей сталью. Но он значительно легче стали, что является главным его достоинством. Несмотря на низкий вес, прочность силумина не уступает стали и другим металлам-аналогам. Как и алюминий, этот сплав не поддается коррозии этому способствует защитная пленка, которая образуется из оксидных соединений. Такая пленка образуется на поверхности при малейших повреждения путем взаимодействия кислорода и молекул алюминия.

Цвет силумина серый, при разрезе серебристый, очень сильно напоминает цвет алюминия.

Декоративные элементы из силумина

Легкий вес сплава при высокой прочности возможен благодаря низкой плотности состава, которая значительно ниже чем у стали. Учитывая вышеизложенные преимущества, применение силумина на сегодняшний день предпочтительней применению стали. Учитывая относительно низкую стоимость сплава, силумин используется для производства дешевой бытовой техники, которая часто не уступает в надежности дорогим аналогам.

Его преимуществом также является пластичность. Благодаря этому он подходит для литься сложных форм, требующих равномерного распределения металла и прочной структуры. Литье в данном случае требует меньше усилий, что делает производство экономичнее.

Температура плавления силумина составляет около 670 градусов, что намного ниже температуры плавления стали. Такое физическое свойство также влияет на снижение себестоимости металлических изделий.

Следует отметить, что физические свойства напрямую зависят от количества примесей. К таким относятся магний и марганец, которые добавляют целенаправленно. Или же цинк, кальций и железо, от которых просто не избавляются на производстве. Поэтому качество силумина может отличатся даже при одинаковой маркировке — оно зависит от технологии производства и добросовестности производителя.

К физически свойствам также относиться повышенная износостойкость. Изделия из этого вещества отличаются устойчивостью к механическим нагрузкам и длительным сроком эксплуатации.

Силуминовая головка блока ДВС

К недостатком материала можно отнести хрупкость. Изделия обладают повышенным уровнем прочности, но при превышении этого порога они могут треснуть. Их можно отремонтировать, для чего используют либо эпоксидный клей, либо сварку. Но сварочные работы следует проводить с осторожностью, чтобы не расплавить изделие. Обычно используют аргон с припоями для сварки алюминия.

Область применения силумина

На сегодняшний день сфера применения силумина разнообразна, но наиболее часто его используют на производстве автомобилей и самолетов. Основные сферы применения:

  1. Высокую популярность в авиастроении он обрел благодаря сочетанию малого веса и высокой прочности, что очень важно для подъема летальных аппаратов в небо и экономии топлива.
  2. Подобные свойства желательны и в производстве автомобилей. Так, вес автомобиля напрямую влияет на ходовые свойства авто, маневренность на дороге и расход топлива. В сфере машиностроения сплав применяется для производства деталей двигателя.
  3. В последнее время особую популярность силумин получил в оружейной сфере, особенно для производств пневматических винтовок. Страйкболисты предпочитают оружие из этого материала из-за легкого веса, высокой прочности и надежности, что на фоне высокой стоимости таких винтовок является незаменимым качеством.
  4. Также его применяют в производстве множества бытовых изделий, от кастрюлей и сковородок до водопроводных смесителей. Бытовые изделия из силумина популярны из-за низкой стоимости.

Маркировка

Исходя из вариативности сплавов, была разработана специальная маркировка силумина. Благодаря ей есть возможность быстро и точно подобрать материал с желаемыми свойствами, определить состав, процентное соотношение элементов и физические свойства.

Маркировка основана на сочетании буквенных и цифровых обозначений. Буквами указываются компоненты, входящие в состав сплава, например, А-алюминий, К-кремний, Ц-цинк. Порядок буквенных обозначений определяется исходя из процентного соотношения компонентов, поэтому марка силумина всегда начинается на букву А.

Цифры указывают на процентное соотношение каждого компонента, кроме алюминия в составе. К примеру, АК20 свидетельствует о наличии в составе 20% кремния и соответственно 80% алюминия.

Следует отметить, что маркировка может отличаться в зависимости от производителей и страны производства. Поэтому при покупке изделий с непонятной маркировкой лучше проконсультироваться с продавцом.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Отправить ответ

  Подписаться  
Уведомление о
Adblock
detector