Как проверить mosfet транзистор мультиметром

MOSFET — проверка и прозвонка

Проверка и определение цоколевки MOSFET

Как показывает опыт, новички, сталкивающиеся с проверкой элементной базы подручными средствами, без каких-либо проблем справляются с проверкой диодов и биполярных транзисторов, но затрудняются при необходимости проверить столь распространенные сейчас MOSFET-транзисторы (разновидность полевых транзисторов). Я надеюсь, что данный материал поможет освоить этот нехитрый способ проверки полевых транзисторов.

Очень кратко о полевых транзисторах

На данный момент понаделано очень много всяких полевых транзисторов. На рисунке показаны графические обозначения некоторых разновидностей полевых транзисторов.

G-затвор, S-исток, D-сток. Сравнивая полевой транзистор с биполярным, можно сказать, что затвор соответствует базе, исток – эмиттеру, сток полевого транзистора – коллектору биполярного транзистора.

Наиболее распространены n-канальные MOSFET – они используются в цепях питания материнских млат, видеокарт и т.п. У MOSFET имеется встроенный диод:

MOSFET n-канальный (слева) и p-канальный (справа).

Транзисторы лучше рисовать с диодом — чтобы потом было проще в схеме ориентироваться. Этот диод является паразитным и от него не удается избавиться на этапе изготовления транзистора. Вообще при изготовлении MOSFET возникает паразитный биполярный транзистор, а диод – один из его переходов. Правда нужно признать, что по схемотехнике этот диод все равно частенько приходится ставить, поэтому производители транзисторов этот диод шунтируют диодом с лучшими показателями как по быстродействию, так и по падению напряжения. В низковольтные MOSFET обычно встраивают диоды Шоттки. А вообще в идеале этого диода не должно было бы быть.

Типовое включение полевого (MOSFET) транзистора:

MOSFET типовое включение

Проверка полевых транзисторов (MOSFET)

И вот, иногда наступает момент, когда необходимо полевой транзистор проверить, прозвонить или определить его цоколевку. Сразу оговоримся, что проверить таким образом можно «logic-level» полевые транзисторы, которые можно встретить в цепях питания на материнских платах и видеокартах. «logic-level» в данном случае означает, что речь идет о приборах, которые управляются, т.е. способны полностью открывать переход D-S, при приложении к затвору относительно небольшого, до 5 вольт, напряжения. На самом деле очень многие MOSFET способны открыться, пусть даже и не полностью, напряжением на затворе до 5В.

В качестве примера возьмем N-канальный MOSFET IRF1010N для его проверки (прозвонки). Известно, что у него такая цоколевка: 1 – затвор (G), 2 – сток (D), 3 – исток (S). Выводы считаются как показано на рисунке ниже.

Распиновка корпуса TO-220

1. Мультиметр выставляем в режим проверки диодов, этот режим очень часто совмещен с прозвонкой. У цифрового мультиметра красный щуп «+», а черный «–», проверить это можно другим мультиметром.
На любом уважающем себя мультиметре есть такая штуковина

Прозвонка диодов, да и вообще полупроводниковых переходов на мультиметре.

2. Щуп «+» на вывод 3, щуп «–» на вывод 2. Получаем на дисплее мультиметра значения 400…700 – это падение напряжения на внутреннем диоде.

3. Щуп «+» на вывод 2, щуп «–» на вывод 3. Получаем на дисплее мультиметра бесконечность. У мультиметров обычно обозначается как 1 в самом старшем разряде. У мультиметров подороже, с индикацией не 1999 а 4000 будет показано значение примерно 2,800 (2,8 вольта).

4. Теперь удерживая щуп «–» на выводе 3 коснуться щупом «+» вывода 1, потом вывода 2. Видим, что теперь щупы стоят так же, как и в п.3, но теперь мультиметр показывает 0…800мВ – у MOSFET открыт канал D-S. Если продолжать удерживать щупы достаточно долго, то станет заметно, что падение напряжения D-S увеличивается, что означает, что канал постепенно закрывается.

5. Удерживая щуп «+» на выводе 2, щупом «–» коснуться вывода 1, затем вернуть его на вывод 3. Как видим, канал опять закрылся и мультиметр показывает бесконечность.

Поясним, что же происходит. С прозвонкой внутреннего диода все понятно. Непонятно почему канал остается либо закрытым, либо открытым? На самом деле все просто. Дело в том, что у мощных MOSFET емкость между затвором и истоком достаточно большая, например у взятого мной транзистора IRF1010N измеренная емкость S-G составляла 3700пФ (3,7нФ). При этом сопротивление S-G составляет сотни ГОм (гигаом) и более. Не забыли – полевые транзисторы управляются электрическим полем, а не током в отличие от биболярных. Поэтому в п.4 касаясь “+” затвора (G) мы его заряжаем относительно истока (S) как обычный конденсатор и управляющее напряжение на затворе может держаться еще достаточно долго.

Если хвататься за выводы транзистора руками, особенно жирными и влажными, емкость транзистора будет разряжаться значительно быстрее, т.к. сопротивление будет определяться не диэлектриком у затвора транзистора, а поверхностным сопротивлением. Не смытый флюс также сильно снижает сопротивление. Поэтому рекомендую помыть транзистор, перед проверкой, например, в спирто-бензиновой смеси.

Читайте также:  Чем отличается автоматическая сварка от полуавтоматической

P.S. Спирто-бензиновая смесь при испарении может генерировать статическое электричество, которое, как известно, негативно действует на полевые транзисторы.

Небольшие пояснения о мультиметрах

1. У цифровых мультиметров режим проверки диодов проводится измерением падения напряжения на щупах, при этом по щупам прибор пропускает стабильный ток 1мА. Именно поэтому в данном режиме прибор показывает не сопротивление, а падение напряжения. Для германиевых диодов оно равно 0,3…0,4В, для кремниевых 0,6…0,8В. Но что бы там не измерялось напряжение на щупах прибора редко превышает 3В – это ограничение накладывается схемотехникой мультиметров.
2. В п.4 при измерении падения напряжения открытого канала величина, отображаемая мультиметром может сильно меняться от различных факторов: напряжения на щупах, температуры, тока стабилизации, характеристик самого полевого транзистора.

Тренировка =)

Теперь можно потренироваться в определении цоколевки мощного транзистора. Перед нами транзистор IRF5210 и его цоколевка мне неизвестна.

1. Начну с поиска диода. Попробую все варианты подключения к мультиметру. После каждого измерения корочу ножки транзистора фольгой чтобы обеспечить разряд емкостей транзистора. Возможные варианты показаны в таблице:

Т.е. диод находится между выводами 2 и 3, соответственно затвор (G) находится на выводе 1.

2. Осталось определить, где находятся сток (D) и исток (S) и полярность (n-канал или p-канал) полевого транзистора.

2.1. Если это n-канальный транзистор, то сток (D) – 3 вывод, исток (S) – 2 вывод. Проверяем. Прикладываем «–» щуп мультиметра к выводу 2, «+» к выводу 3 – канал закрыт, так и должно быть – мы же его еще не пытались открыть. Теперь не отнимая щупа «–» от вывода 2 щупом «+» касаемся вывода 1, затем «+» опять прикладываем к выводу 3. Канал не открылся – значит, наше предположение о том, что IRF5210 n-канальный транзистор оказалось неверным.

2.2. Если это p-канальный транзистор, то сток (D) – 2 вывод, исток (S) – 3. Проверяем. Прикладываем «+» щуп мультиметра к выводу 3, «–» к выводу 2 – канал закрыт, так и должно быть – мы же его еще не пытались открыть. Теперь не отнимая щупа «+» от вывода 3 щупом «–» касаемся вывода 1, затем «–» опять прикладываем к выводу 2. Канал открылся – значит, что IRF5210 p-канальный транзистор, вывод 1 – затвор, вывод 2 – сток, вывод 3 – исток.

На самом деле все не так сложно. Буквально пол часа тренировки – и вы сможете без каких-либо проблем проверять MOSFETы и определять их цоколевку!

Это сравнительно новый тип транзисторов, управление которых осуществляется не электрическим током, как в биполярных транзисторах, а электрическим напряжением (полем), о чём и говорит английская аббревиатура MOSFET (Metal-Oxide-Semiconductor Field Effect Transistor или в переводе металл-окисел-полупроводник полевой транзистор), в русской транскрипции этот тип обозначается как МОП (металл-окисел-полупроводник) или МДП (металл-диэлектрик-полупроводник).

Отличительной конструктивной особенностью полевых транзисторов является изолированный затвор (вывод, аналогичный базе у биполярных транзисторов), также у MOSFET имеются выводы сток и исток, аналоги коллектора и эмиттера у биполярных.

Существует и ещё более современный тип IGBT, в русской транскрипции БТИЗ (биполярный транзистор с изолированным затвором), гибридный тип, где МОП (МДП) транзистор с переходом n-типа управляет базой биполярного, и это позволяет использовать преимущества обоих типов: быстродействие, почти как у полевых, и большой электрический ток через биполярный при очень малом падении напряжения на нём при открытом затворе, при очень большом напряжении пробоя и большом входном сопротивлении.

Полевики находят широкое применение в современной жизни, а если говорить о чисто бытовом уровне, то это всевозможные блоки питания и регуляторы напряжения от компьютерного железа и всевозможных электронных гаджетов до других, более простых, бытовых приборов — стиральных, посудомоечных машин, миксеров, кофемолок, пылесосов, различных осветителей и другого вспомогательного оборудования. Само собой, что-то из всего этого разнообразия иногда выходит из строя и появляется необходимость выявления конкретной неисправности. Сама распространённость этого вида деталей ставит вопрос:

Как проверить полевой транзистор мультиметром?

Перед любой проверкой полевого транзистора нужно разобраться с назначением и маркировкой его выводов:

  • G (gate) — затвор, D (drain) — сток, S (source) — исток

Если маркировки нет или она не читается, придётся найти паспорт (даташип) изделия с указанием назначения каждого вывода, причём выводов может быть не три, а больше, это значит, что выводы объединены между собой внутри.

И также нужно подготовить мультиметр: подключить красный щуп к плюсовому разъёму, соответственно, чёрный к минусу, переключить прибор в режим проверки диодов и коснуться щупами друг друга, мультиметр покажет «0» или «короткое замыкание», разведите щупы, мультиметр покажет «1» или «бесконечное сопротивление цепи» — прибор рабочий. Про исправную батарейку в мультиметре говорить излишне.

Читайте также:  Строительство забора своими руками

Подключение щупов мультиметра указано для проверки n-канального полевого транзистора, описание всех проверок тоже для n-канального типа, но если вдруг попадётся более редкий p-канальный полевик, щупы надо поменять местами. Понятно, что в первую очередь ставится задача оптимизации процесса проверки, чтобы пришлось как можно меньше выпаивать и паять деталей, поэтому посмотреть, как проверить транзистор, не выпаивая, можно на этом видео:

Проверка полевика, не выпаивая

Является предварительной, она может помочь определить, какую деталь нужно проверить точнее и, может быть, заменить.

При прозвонке полевого транзистора, не выпаивая, обязательно отключаем проверяемый прибор от сети и/или блока питания, вынимаем аккумуляторы или батарейки (если они есть) и приступаем к проверке.

  1. Чёрный щуп на D, красный на S, показание мультиметра примерно 500 мВ (милливольт) или больше — скорее исправен, показание 50 мВ вызывает подозрение, когда показание меньше 5 мВ — скорее неисправен.
  2. Чёрный на D, а красный на G: большая разность потенциалов (до1000 мВ и даже выше) — скорее исправен, если мультиметр показывает близко к пункту 1, то это подозрительно, маленькие цифры (50 мВ и меньше), и близко к первому пункту — скорее неисправен.
  3. Чёрный на S, красный на G: около 1000 мВ и выше — скорее исправен, близко к первому пункту — подозрительно, меньше 50 мВ и совпадает с предыдущими показаниями — видимо, полевой транзистор неисправен.

Проверка показала предварительно по всем трём пунктам неисправность? Нужно выпаивать деталь и приступать к следующему действию:

Проверка полевого транзистора мультиметром

Включает в себя подготовку мультиметра (смотри выше). Обязательно снятие статического напряжения с себя и накопленного заряда с полевика, иначе можно просто «убить» вполне себе исправную деталь. Статическое напряжение с себя можно снять, используя антистатический манжет, накопленный заряд снимается закорачиванием всех выводов транзистора.

Прежде всего нужно учитывать, что практически все полевые транзисторы имеют предохранительный диод между истоком и стоком, поэтому проверять начинаем именно с этих выводов.

  1. Красный щуп на S (исток), чёрный на D (сток): показания мультиметра в районе 500 мВ или чуть выше — исправен, чёрный щуп на S, красный на D, показания мультиметра «1» или «бесконечное сопротивление» — шунтирующий диод исправен.
  2. Чёрный на S, красный на G: показания мультиметра «1» или «бесконечное сопротивление», норма, заодно зарядили затвор положительным зарядом, открыли транзистор.
  3. Не убирая чёрного щупа, переносим красный на D, по открытому каналу течёт ток, мультиметр что-то показывает (не «0» и не «1»), меняем щупы местами: показания примерно такие же — норма.
  4. Красный щуп на D, чёрный на G: показания мультиметра «1» или «бесконечное сопротивление» — норма, заодно разрядили затвор, закрыли транзистор.
  5. Красный остаётся на D, чёрный щуп на S, показания мультиметра «1» или «бесконечное сопротивление» — исправен. Меняем щупы местами, показания мультиметра в районе 500 мВ или выше — норма.

Вывод по итогам проверки: пробоев между электродами (выводами) нет, затвор срабатывает от небольшого (меньше 5В) напряжения на щупах мультиметра, транзистор исправен.

Проверка IGBT (БТИЗ) мультиметром

Про подготовку мультиметра повторяться не будем.

IGBT транзистор имеет следующие выводы:

  • G (gate) — затвор, К (C) — коллектор, Э (E) — эмиттер

  1. Красный на G, чёрный на E: мультиметр показывает «1» или «бесконечное сопротивление» — норма. Меняем щупы местами, показания те же — норма, заодно зарядили затвор отрицательным зарядом, закрыли транзистор.
  2. Чёрный на C, красный на E: мультиметр показывает «1» или «бесконечное сопротивление» — норма.
  3. Меняем щупы местами, когда есть шунтирующий диод, мультиметр покажет не«0» и не «1», а падение напряжения на диоде, если диода нет мультиметр покажет «1» или бесконечное сопротивление — норма.

Вывод: по итогам проверки это изделие исправно.

В этой статье я расскажу вам, как проверить полевой транзистор с изолированным затвором, то есть МОП-транзистор. Это вторая часть статьи по проверки полевых транзисторов. В первой части я рассказывал, как проверить транзистор с управляющим p-n переходом.

Да, полевые транзисторы с управляющим p-n переходом уходят в прошлое, а сейчас в современных схемах применяются более совершенные полевые транзисторы с изолированным затвором. Тогда предлагаю научиться их проверять.

Но для того, что бы понять, как проверить полевой транзистор, давайте я вам в двух словах расскажу, как он устроен.

Полевой транзистор с изолированным затвором мы знаем под более привычным названием МОП -транзистор (метал -окисел-полупроводник), МДП -транзистор(метал -диэлектрик-полупроводник), либо в английском варианте MOSFET(Metal-Oxide-Semiconductor-Field-Effect-Transistor)

Эти аббревиатуры вытекают из структуры построения транзистора. А именно.

Структура полевого MOSFET транзистора.

Для создания МОП-транзистора берется подложка, выполненная из p-полупроводника, где основными носителями заряда являются положительные заряды, так называемые дырки. На рисунке вы видите, что вокруг ядра атома кремния вращаются электроны, обозначенные белыми шариками.

Читайте также:  Предел прочности при растяжении обозначение

Когда электрон покидает атом, в этом месте образуется «дырка» и атом приобретает положительный заряд, то есть становиться положительным ионом. Дырки на модели обозначены, как зеленые шарики.

На p-подложке создаются две высоколегированные n-области, то есть области с большим количеством свободных электронов. На рисунке эти свободные электроны обозначены красными шариками.

Свободные электроны свободно перемещаются по n-области. Именно они впоследствии и будут участвовать в создании тока через МДП-тназистор.

Пространство между двумя n-областями, называемое каналом покрывается диэлектриком, обычно это диоксид кремния.

Над диэлектрическим слоем располагают металлический слой. N-области и металлический слой соединяют с выводами будущего транзистора.

Выводы транзистора называются исток, затвор и сток.

Ток в МОП-транзисторе течет от истока через канал к стоку. Для управления этим током служит изолированный затвор.

Однако если подключить напряжение между истоком и стоком, при отсутствии напряжения на затворе ток через транзистор не потечет, потому что на его пути будет барьер из p-полупроводника.

Если подать на затвор положительное напряжение, относительно истока, то возникающее электрическое поле будет к области под затвором притягивать электроны и выталкивать дырки.

По достижению определенной концентрации электронов под затвором, между истоком и стоком создается тонкий n-канал, по которому потечет ток от истока к стоку.

Следует сказать, что ток через транзистор можно увеличить, если подать больший потенциал напряжения на затвор. При этом канал становиться шире, что приводит к увеличению тока между истоком и стоком.

МДП-транзистор с каналом p-типа имеет аналогичную структуру, однако подложка в таком транзисторе выполнена из полупроводника n-типа, а области истока и стока из высоколегированного полупроводника p-типа.

В таком полевом транзисторе основными носителями заряда являются положительные ионы (дырки). Для того, что бы открыть канал в полевом транзисторе с каналом p-типа необходимо на затвор подать отрицательный потенциал.

Проверка полевого MOSFET транзистора цифровым мультиметром

Для примера возьмем полевой МОП-транзистор с каналом n-типа IRF 640. Условно-графическое обозначение такого транзистора и его цоколевку вы видите на следующем рисунке.

Перед началом проверки транзистора замкните все его выводы между собой, что бы снять возможный заряд с транзистора.

Проверка встроенного диода

Для начал следует подготовить мультимер и перевести его в режим проверки диодов. Для этого переключатель режимов/пределов установите в положение с изображением диода.

В этом режиме мультиметр при подключении диода в прямом направлении (плюс прибора на анод, минус прибора на катод) показывает падение напряжения на p-n переходе диода. При включении диода в обратном направлении мультиметр показывает «1».

Итак, подключаем щупы мультиметра, как было сказано выше, в прямом включении диода. Таким образом, красный шум (+) подключаем на исток, а черный (-) на сток.

Мультиметр должен показать падение напряжение на переходе порядка 0,5-0,7.

Меняем полярность подключения встроенного диода, при этом мультиметр, при исправности диода покажет «1».

Проверка работы полевого МОП транзистора

Проверяемый нами МОП-транзистор имеет канал n-типа, поэтому, что бы канал стал электропроводен необходимо на затвор транзистора относительно истока либо стока подать положительный потенциал. При этом электроны из подложки переместятся в канал, а дырки будут вытолкнуты из канала. В результате канал между истоком и стоком станет электропроводен и через транзистор потечет ток.

Для открытия транзистора будет достаточно напряжения на щупах мультиметра в режиме прозвонки диодов.

Поэтому черный (отрицательный) щуп мультиметра подключаем на исток (или сток), а красным касаемся затвора.

Если транзистор исправен, то канал исток-сток станет электропроводным, то есть транзистор откроется.

Теперь если прозвонить канал исток-сток, то мультиметр покажет какое-то значение падение напряжения на канале, в виду того, что через транзистор потечет ток.

Таким образом черный щуп транзистора ставим на исток, а красный на сток и мультиметр покажет падение напряжение на канале.

Если поменять полярность щупов, то показания мультиметра будут примерно одинаковыми.

Что бы закрыть транзистор достаточно относительно истока на затвор подать отрицательный потенциал.

Следовательно, подключаем положительный (красный) щуп мультиметра на исток, а черным касаемся затвор.

При этом исправный транзистор закроется. И если после этого прозвонить канал исток-сток, то мультиметр покажет лишь падение напряжения на встроенном диоде.

Если транзистор управляется напряжением с мультиметра (то есть открывается и закрывается), значит можно сделать вывод, что транзистор исправен.

Проверка полевого МОП – транзистора с каналом p-типа осуществляется подобным образом. За тем исключением, что во всех пунктах проверки полярность подключения щупов меняется на противоположную.

Более подробно и просто всю методику проверки полевого транзистора я изложил в следующем видеоуроке:

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Отправить ответ

  Подписаться  
Уведомление о
Adblock
detector