Рабочие конденсаторы для электродвигателя 3 квт

Функция стабилизаторов сводится к тому, что они выполняют роль емкостных наполнителей энергии для выпрямителей фильтров стабилизаторов. Также они могут производить передачу сигнала между усилителями. Для запуска и работы в течение продолжительного количества времени, в системе переменного тока для асинхронных двигателей тоже используют конденсаторы. Время работы такой системы можно варьировать с помощью емкости выбранного конденсатора.

Первым и единственно главным параметром вышеупомянутого инструмента является емкость. Она зависит от площади активного подключения, который изолирован слоем диэлектрика. Этот слой практически невиден человеческому глазу, небольшое количество атомных слоев формируют ширину пленки.

То есть конденсатор создан для того, чтоб накапливать, хранить и передавать определенное количество энергии. Так зачем они нужны, если можно подключить источник питания напрямую к двигателю. Все тут не так просто. Если подключить двигатель непосредственно к источнику питания, то в лучшем случае он не будет работать, в худшем сгорит.

Для того чтоб трехфазный мотор работал в однофазной цепи нужен аппарат, который сможет сдвинуть фазу на 90° на рабочем (третьем) выводе. Также конденсатор играет роль, такой себе катушки индуктивности, за счет того что через него проходит переменный ток – его скачки нивелируются за чет того что, перед работой, в конденсаторе отрицательные и положительные заряды равномерно накапливаются на пластинах, а потом передаются принимающему устройству.

Всего существует 3 основных вида конденсаторов:

Описание разновидностей конденсаторов и расчет удельной емкости

  • Схема подключения пусковых конденсаторов

Для электродвигателей с низкой частотой идеальным вариантом будет электролитический конденсатор, он обладает максимальной возможной емкостью, может достигать значения в 100000 мкФ. При этом напряжение может колебаться от стандартных 220 В до 600 В. Электродвигатели, в этом случае, могут использоваться в тандеме с фильтром источника энергии. Но при этом при подключении необходимо строго соблюдать полярность. Оксидная пленка, являющаяся очень тонкой, выступает в роли электродов. Зачастую электрики их называют оксидными.

  • Полярные лучше не использовать в системе подключенных к сети переменного тока, в этом случае разрушается слой диэлектрика и происходит нагрев аппарата и, как следствие, замыканию накоротко.
  • Неполярные являются хорошим вариантом, но их стоимость и габариты значительно выше электролитических.
  • Подбирая лучший вариант нужно учитывать несколько факторов. Если подключение происходит через однофазную сеть с напряжением в 220 В, то для пуска нужно использовать фазосдвигающий механизм. Притом их должно быть два, не только для самого конденсатора, но и для двигателя. Формулы, по которым вычисляется удельная емкость конденсатора, зависит от типа подключения к системе, их всего два: треугольник и звезда.

    I1 – номинальный ток фазы двигателя, А (Амперы, чаще всего указывается на упаковке двигателя);

    Uсети – напряжение в сети (самые стандартные варианты 220 и 380 В). Есть и большее напряжение, но для них нужны совершенно другие типы соединения и более мощные двигатели.

    где Сп – Пусковая емкость, Ср – рабочая емкость, Со – отключаемая емкость.

    Чтоб не напрягаться с расчетами умные люди вывели средние, оптимальные значения, зная оптимальную мощность электродвигателей, которая обозначается – М. Важным правилом является то, что пусковая емкость должна быть больше рабочей.

    При мощности От 0,4 до 0,8 кВт: рабочая емкость – 40 мкФ, пусковая мощность – 80 мкФ, От 0,8 до 1,1 кВт: 80 мкФ и 160, мкФ, соответственно. От 1,1 до 1,5 кВт: Ср – 100 мкФ, Сп – 200 мкФ. От 1,5- 2,2 кВт: Ср – 150 мкФ, Сп 250 мкФ; При 2,2 кВт рабочая мощность должна быть не меньше 230 мкФ, а пусковая – 300 мкФ.

    При подключении двигателя, рассчитанного на работу при 380 В, в сеть переменного тока с напряжением 220 В, происходит потеря половины номинальной мощности, хотя это никак не влияет, но скорость вращения ротора. При расчете мощности это является важным фактором, уменьшить эти потери можно при схеме подключения «треугольник», КПД двигателя в этом случае будет равно 70%.

    Полярные конденсаторы лучше не использовать в системе подключенных к сети переменного тока, в этом случае разрушается слой диэлектрика и происходит нагрев аппарата и, как следствие, замыканию накоротко

    Схема подключения «Треугольник»

    Само подключение является относительно легким, происходит присоединения токопроводящего провода к пусковому конденсатору и к клеммам двигателя (или мотора). То есть если более упрощенно взять есть мотор в нем находятся три токопроводящие клеммы. 1 – ноль, 2 – рабочая, 3 –фаза.

    Провод питания заголяется и в нем есть два основных провода в синей и коричневой обмотке, коричневая присоединяется к 1 клемме, ней же присоединяется и один из проводов конденсатора, ко второй рабочей клемме происходит присоединение второго провода конденсатора, ну а к фазе подключается синий провод питания.

    Если мощность двигателя является маленькой, до полтора кВт, о в принципе можно использовать только один конденсатор. Но при работе с нагрузками и с большими мощностями обязательное использование двух конденсаторов, они между собой последовательно соединены, но между ними установлен пусковой механизм, в народе называемый «тепловой», который отключает конденсатор при достижении необходимого объёма.

    Нужно понять – сама обмотка двигателя уже имеет подключение по схеме «звезда», но электрики ее с помощью проводов превращают в «треугольник». Тут главное распределить провода, которые входят в распределительную коробку.

    Схема подключения “Треугольник” и “Звезда”

    Схема подключения «Звезда»

    А вот если двигатель имеет 6 выходов – клемм для подключения, то его нужно раскрутить и посмотреть какие клеммы между собой взаимосвязаны. После этого она пере подключается все в тот же треугольник.

    Читайте также:  Расчетный удельный вес элемента li 100

    Для этого меняются перемычки, допустим на двигателе имеется 2 ряда клемм по 3 штуки, их номеруют слева направо (123,456), с помощью проводов последовательно соединяются 1 с 4, 2 с 5, 3 с 6, нужно в первую очередь найти нормативные документы и посмотреть на каком именно реле происходит пуск и окончание обмотки.

    В этом случае условные 456 станут: нулем, рабочей и фазой – соответственно. К ним подключается конденсатор, как и в предыдущей схеме.

    Когда конденсаторы подключены остается только опробовать собранную схему, главное не запутаться в последовательности соединения проводов.

    Что делать, если требуется подключить двигатель к источнику, рассчитанному на другой тип напряжения (например, трехфазный двигатель к однофазной сети)? Такая необходимость может возникнуть, в частности, если нужно подключить двигатель к какому-либо оборудованию (сверлильному или наждачному станку и пр.). В этом случае используются конденсаторы, которые, однако, могут быть разного типа. Соответственно, надо иметь представление о том, какой емкости нужен конденсатор для электродвигателя, и как ее правильно рассчитать.

    Что такое конденсатор

    Конденсатор состоит из двух пластин, расположенных друг напротив друга. Между ними помещается диэлектрик. Его задача – снимать поляризацию, т.е. заряд близкорасположенных проводников.

    Существует три вида конденсаторов:

    • Полярные. Не рекомендуется использовать их в системах, подключенных к сети переменного тока, т.к. вследствие разрушения слоя диэлектрика происходит нагрев аппарата, вызывающий короткое замыкание.
    • Неполярные. Работают в любом включении, т.к. их обкладки одинаково взаимодействуют с диэлектриком и с источником.
    • Электролитические (оксидные). В роли электродов выступает тонкая оксидная пленка. Считаются идеальным вариантом для электродвигателей с низкой частотой, т.к. имеют максимально возможную емкость (до 100000 мкФ).

    Как подобрать конденсатор для трехфазного электродвигателя

    Задаваясь вопросом: как подобрать конденсатор для трехфазного электродвигателя, нужно принять во внимание ряд параметров.

    Чтобы подобрать емкость для рабочего конденсатора, необходимо применить следующую расчетную формулу: Сраб.=k*Iф / U сети, где:

    • k – специальный коэффициент, равный 4800 для подключения «треугольник» и 2800 для «звезды»;
    • Iф – номинальное значение тока статора, это значение обычно указывается на самом электродвигателе, если же оно затерто или неразборчиво, то его измеряют специальными клещами;
    • U сети – напряжение питания сети, т.е. 220 вольт.

    Таким образом вы рассчитаете емкость рабочего конденсатора в мкФ.

    Еще один вариант расчета – принять во внимание значение мощности двигателя. 100 Ватт мощности соответствуют примерно 7 мкФ емкости конденсатора. Осуществляя расчеты, не забывайте следить за значением тока, поступающего на фазную обмотку статора. Он не должен иметь большего значения, чем номинальный показатель.

    В случае, когда пуск двигателя производится под нагрузкой, т.е. его пусковые характеристики достигают максимальных величин, к рабочему конденсатору добавляется пусковой. Его особенность заключается в том, что он работает примерно в течение трех секунд в период пуска агрегата и отключается, когда ротор выходит на уровень номинальной частоты вращения. Рабочее напряжение пускового конденсатора должно быть в полтора раза выше сетевого, а его емкость – в 2,5-3 раза больше рабочего конденсатора. Чтобы создать необходимую емкость, вы можете подключить конденсаторы как последовательно, так и параллельно.

    Как подобрать конденсатор для однофазного электродвигателя

    Асинхронные двигатели, рассчитанные на работу в однофазной сети, обычно подключаются на 220 вольт. Однако если в трехфазном двигателе момент подключения задается конструктивно (расположение обмоток, смещение фаз трехфазной сети), то в однофазном необходимо создать вращательный момент смещения ротора, для чего при запуске применяется дополнительная пусковая обмотка. Смещение ее фазы тока осуществляется при помощи конденсатора.

    Итак, как подобрать конденсатор для однофазного электродвигателя?

    Чаще всего значение общей емкости Сраб+Спуск (не отдельного конденсатора) таково: 1 мкФ на каждые 100 ватт.

    Есть несколько режимов работы двигателей подобного типа:

    • Пусковой конденсатор + дополнительная обмотка (подключаются на время запуска). Емкость конденсатора: 70 мкФ на 1 кВт мощности двигателя.
    • Рабочий конденсатор (емкость 23-35 мкФ) + дополнительная обмотка, которая находится в подключенном состоянии в течение всего времени работы.
    • Рабочий конденсатор + пусковой конденсатор (подключены параллельно).

    Если вы размышляете: как подобрать конденсатор к электродвигателю 220в, стоит исходить из пропорций, приведенных выше. Тем не менее, нужно обязательно проследить за работой и нагревом двигателя после его подключения. Например, при заметном нагревании агрегата в режиме с рабочим конденсатором, следует уменьшить емкость последнего. В целом, рекомендуется выбирать конденсаторы с рабочим напряжением от 450 В.

    Как выбрать конденсатор для электродвигателя – вопрос непростой. Для обеспечения эффективной работы агрегата нужно чрезвычайно внимательно рассчитать все параметры и исходить из конкретных условий его работы и нагрузки.

    Оглавление

    1. Простой способ включения трехфазного двигателя.

    1.1. Выбор трехфазного двигателя для подключения в однофазную сеть.

    Среди различных способов запуска трехфазных электродвигателей в однофазную сеть, наиболее простой базируется на подключении третьей обмотки через фазосдвигающий конденсатор. Полезная мощность развиваемая двигателем в этом случае составляет 50. 60% от его мощности в трехфазном включении. Не все трехфазные электродвигатели, однако, хорошо работают при подключении к однофазной сети. Среди таких электродвигателей можно выделить, например, с двойной клеткой короткозамкнутого ротора серии МА. В связи с этим при выборе трехфазных электродвигателей для работы в однофазной сети следует отдать предпочтение двигателям серий А, АО, АО2, АПН, УАД и др.

    Для нормальной работы электродвигателя с конденсаторным пуском необходимо, чтобы емкость используемого конденсатора менялась в зависимости от числа оборотов. На практике это условие выполнить довольно сложно, поэтому используют двухступенчатое управление двигателем. При пуске двигателя подключают два конденсатора, а после разгона один конденсатор отключают и оставляют только рабочий конденсатор.

    1.2. Расчет параметров и элементов электродвигателя.

    Если, например, в паспорте электродвигателя указано напряжение его питания 220/380, то двигатель включают в однофазную сеть по схеме, представленной на рис. 1

    Рис. 1 Принципиальная схема включения трехфазного электродвигателя в сеть 220 В:

    С р — рабочий конденсатор;

    С п — пусковой конденсатор;

    Читайте также:  Проволока вязальная для вязки арматуры

    П1 — пакетный выключатель

    После включения пакетного выключателя П1 замыкаются контакты П1.1 и П1.2, после этого необходимо сразу же нажать кнопку "Разгон". После набора оборотов кнопка отпускается. Реверсирование электродвигателя осуществляется путем переключения фазы на его обмотке тумблером SA1.

    Емкость рабочего конденсатора Ср в случае соединения обмоток двигателя в "треугольник" определяется по формуле:

    , где Ср — емкость рабочего конденсатора в мкФ;
    I — потребляемый электродвигателем ток в А;
    U -напряжение в сети, В

    А в случае соединения обмоток двигателя в "звезду" определяется по формуле:

    , где Ср — емкость рабочего конденсатора в мкФ;
    I — потребляемый электродвигателем ток в А;
    U -напряжение в сети, В

    Потребляемый электродвигателем ток в выше приведенных формулах, при известной мощности электродвигателя, можно вычислить из следующего выражения:

    , где Р — мощность двигателя в Вт, указанная в его паспорте;
    h — кпд;
    cos j — коэффициент мощности;
    U -напряжение в сети, В

    Емкость пускового конденсатора Сп выбирают в 2..2,5 раза больше емкости рабочего конденсатора. Эти конденсаторы должны быть рассчитаны на напряжение в 1,5 раза больше напряжения сети. Для сети 220 В лучше использовать конденсаторы типа МБГО, МБПГ, МБГЧ с рабочим напряжением 500 В и выше. При условии кратковременного включения в качестве пусковых конденсаторов можно использовать и электролитические конденсаторы типа К50-3, ЭГЦ-М, КЭ-2 с рабочим напряжением не менее 450 В. Для большей надежности электролитические конденсаторы соединяют последовательно, соединяя между собой их минусовые выводы, и шунтируют диодами (рис. 2)

    Рис. 2 Принципиальная схема соединения электролитических конденсаторов для использования их в качестве пусковых конденсаторов.

    Общая емкость соединенных конденсаторов составит (С1+С2)/2.

    На практике величину емкостей рабочих и пусковых конденсаторов выбирают в зависимости от мощности двигателя по табл. 1

    Таблица 1. Значение емкостей рабочих и пусковых конденсаторов трехфазного электродвигателя в зависимости от его мощности при включении в сеть 220 В.
    Мощность трехфазного двигателя, кВт 0,4 0,6 0,8 1,1 1,5 2,2
    Минимальная емкость рабочего конденсатора Ср, мкФ 40 60 80 100 150 230
    Минимальная емкость пускового конденсатора Ср, мкФ 80 120 160 200 250 300

    Следует отметить, что у электродвигателя с конденсаторным пуском в режиме холостого хода по обмотке, питаемой через конденсатор, протекает ток на 20. 30 % превышающий номинальный. В связи с этим, если двигатель часто используется в недогруженном режиме или вхолостую, то в этом случае емкость конденсатора Ср следует уменьшить. Может случиться, что во время перегрузки электродвигатель остановился, тогда для его запуска снова подключают пусковой конденсатор, сняв нагрузку вообще или снизив ее до минимума.

    Емкость пускового конденсатора Сп можно уменьшить при пуске электродвигателей на холостом ходу или с небольшой нагрузкой. Для включения, например, электродвигателя АО2 мощностью 2,2 кВт на 1420 об/мин можно использовать рабочий конденсатор емкостью 230 мкФ, а пусковой — 150 мкФ. В этом случае электродвигатель уверенно запускается при небольшой нагрузке на валу.

    1.3. Переносной универсальный блок для пуска трехфазных электродвигателей мощностью около 0,5 кВт от сети 220 В.

    Для запуска электродвигателей различных серий, мощностью около 0,5 кВт, от однофазной сети без реверсирования, можно собрать переносной универсальный пусковой блок (рис. 3)

    Рис. 3 Принципиальная схема переносного универсального блока для пуска трехфазных электродвигателей мощностью около 0,5 кВт от сети 220 В без реверса.

    При нажатии на кнопку SB1 срабатывает магнитный пускатель КМ1 (тумблер SA1 замкнут) и своей контактной системой КМ 1.1, КМ 1.2 подключает электродвигатель М1 к сети 220 В. Одновременно с этим третья контактная группа КМ 1.3 замыкает кнопку SB1. После полного разгона двигателя тумблером SA1 отключают пусковой конденсатор С1. Остановка двигателя осуществляется нажатием на кнопку SB2.

    1.3.1. Детали.

    В устройстве используется электродвигатель А471А4 (АО2-21-4) мощностью 0,55 кВт на 1420 об/мин и магнитный пускатель типа ПМЛ, рассчитанный на переменный ток напряжением 220 В. Кнопки SB1 и SB2 — спаренные типа ПКЕ612. В качестве переключателя SA1 используется тумблер Т2-1. В устройстве постоянный резистор R1 — проволочный, типа ПЭ-20, а резистор R2 типа МЛТ-2. Конденсаторы С1 и С2 типа МБГЧ на напряжение 400 В. Конденсатор С2 составлен из параллельно соединенных конденсаторов по 20 мкФ 400 В. Лампа HL1 типа КМ-24 и 100 мА.

    Пусковое устройство смонтировано в металлическом корпусе размером 170х140х50 мм (рис. 4)

    Рис. 4 Внешний вид пускового устройства и чертеж панели поз.7.

    1- корпус 2 — ручка для переноски 3 — сигнальная лампа 4 — тумблер отключения пускового конденсатора
    5 -кнопки "Пуск" и "Стоп" 6 — доработанная электровилка 7- панель с гнездами разъема

    На верхней панели корпуса расположены кнопки "Пуск" и "Стоп" — сигнальная лампа и тумблер для отключения пускового конденсатора. На передней панели корпуса устройства находится разъем для подключения электродвигателя.

    Для отключения пускового конденсатора можно использовать дополнительное реле К1, тогда надобность в тумблере SA1 отпадает, а конденсатор будет отключаться автоматически (рис.5)

    Рис. 5 Принципиальная схема пускового устройства с автоматическим отключением пускового конденсатора.

    При нажатии на кнопку SB1 срабатывает реле К1 и контактной парой К1.1 включает магнитный пускатель КМ1, а К1.2 — пусковой конденсатор Сп. Магнитный пускатель КМ1 самоблокируется с помощью своей контактной пары КМ 1.1, а контакты КМ 1.2 и КМ 1.3 подсоединяют электродвигатель к сети. Кнопку "Пуск" держат нажатой до полного разгона двигателя, а после отпускают. Реле К1 обесточивается и отключает пусковой конденсатор, который разряжается через резистор R2. В это же время магнитный пускатель КМ 1 остается включенным и обеспечивает питание электродвигателя в рабочем режиме. Для остановки электродвигателя следует нажать кнопку "Стоп". В усовершенствованном пусковом устройстве по схеме рис.5, можно использовать реле типа МКУ-48 или ему подобное.

    2. Использование электролитических конденсаторов в схемах запуска электродвигателей.

    При включении трехфазных асинхронных электродвигателей в однофазную сеть, как правило, используют обычные бумажные конденсаторы. Практика показала, что вместо громоздких бумажных конденсаторов можно использовать оксидные (электролитические) конденсаторы, которые имеют меньшие габариты и более доступны в плане покупки. Схема эквивалентной замены обычного бумажного дана на рис. 6

    Читайте также:  Станки для производства черенков

    Рис. 6 Принципиальная схема замены бумажного конденсатора (а) электролитическим (б, в).

    Положительная полуволна переменного тока проходит через цепочку VD1, С2, а отрицательная VD2, С2. Исходя из этого можно использовать оксидные конденсаторы с допустимым напряжением в два раза меньшим, чем для обычных конденсаторов той же емкости. Например, если в схеме для однофазно сети напряжением 220 В используется бумажный конденсатор на напряжение 400 В, то при его замене, по вышеприведенной схеме, можно использовать электролитический конденсатор на напряжение 200 В. В приведенной схеме емкости обоих конденсаторов одинаковы и выбираются аналогично методике выбора бумажных конденсаторов для пускового устройства.

    2.1. Включение трехфазного двигателя в однофазную сеть с использованием электролитических конденсаторов.

    Схема включения трехфазного двигателя в однофазную сеть с использованием электролитических конденсаторов приведена на рис.7.

    Рис. 7 Принципиальная схема включения трехфазного двигателя в однофазную сеть при помощи электролитических конденсаторов.

    В приведенной схеме, SA1 — переключатель направления вращения двигателя, SB1 — кнопка разгона двигателя, электролитические конденсаторы С1 и С3 используются для пуска двигателя, С2 и С4 — во время работы.

    Подбор электролитических конденсаторов в схеме рис. 7 лучше производить с помощью токоизмерительных клещей. Измеряют токи в точках А, В, С и добивается равенства токов в этих точках путем ступенчатого подбора емкостей конденсаторов. Замеры проводят при нагруженном двигателе в том режиме, в котором предполагается его эксплуатация. Диоды VD1 и VD2 для сети 220 В выбираются с обратным максимально допустимым напряжением не менее 300 В. Максимальный прямой ток диода зависит от мощности двигателя. Для электродвигателей мощностью до 1 кВт подойдут диоды Д245, Д245А, Д246, Д246А, Д247 с прямым током 10 А. При большей мощности двигателя от 1 кВт до 2 кВт нужно взять более мощные диоды с соответствующим прямым током, или поставить несколько менее мощных диодов параллельно, установив их на радиаторы.

    3. Включение мощных трехфазных двигателей в однофазную сеть.

    Конденсаторная схема включения трехфазных двигателей в однофазную сеть позволяет получить от двигателя не более 60% от номинальной мощности, в то время как предел мощности эликтрифицированного устройства ограничивается 1,2 кВт. Этого явно недостаточно для работы электрорубанка или электропилы, которые должны иметь мощность 1,5. 2 кВт. Проблема в данном случае может быть решена использованием электродвигателя большей мощности, например, с мощностью 3. 4 кВт. Такого типа двигатели рассчитаны на напряжение 380 В, их обмотки соединены «звездой» и в клеммной коробке содержится всего 3 вывода. Включение такого двигателя в сеть 220 В приводит к снижению номинальной мощности двигателя в 3 раза и на 40 % при работе в однофазной сети. Такое снижение мощности делает двигатель непригодным для работы, но может быть использовано для раскрутки ротора вхолостую или с минимальной нагрузкой. Практика показывает, что большая часть электродвигателей уверенно разгоняется до номинальных оборотов, и в этом случае пусковые токи не превышают 20 А.

    3.1. Доработка трехфазного двигателя.

    Наиболее просто можно осуществить перевод мощного трехфазного двигателя в рабочий режим, если переделать его на однофазный режим работы, получая при этом 50 % номинальной мощности. Переключение двигателя в однофазный режим требует небольшой его доработки. Вскрывают клеммную коробку и определяют, с какой стороны крышки корпуса двигателя подходят выводы обмоток. Отворачивают болты крепления крышки и вынимают ее из корпуса двигателя. Находят место соединения трех обмоток в общую точку и подпаивают к общей точке дополнительный проводник с сечением, соответствующим сечению провода обмотки. Скрутку с подпаянным проводником изолируют изолентой или поливинилхлоридной трубкой, а дополнительный вывод протягивают в клеммную коробку. После этого крышку корпуса устанавливают на место.

    Схема коммутации электродвигателя в этом случае будет иметь вид, показанный на рис. 8.

    Рис. 8 Принципиальная схема коммутации обмоток трехфазного электродвигателя для включения в однофазную сеть.

    Во время разгона двигателя используется соединение обмоток «звездой» с подключением фазосдвигающего конденсатора Сп. В рабочем режиме в сеть остается включенной только одна обмотка, и вращение ротора поддерживается пульсирующим магнитным полем. После переключения обмоток конденсатор Сп разряжается через резистор Rр. Работа представленной схемы была опробована с двигателем типа АИР-100S2Y3 (4 кВт, 2800 об/мин), установленном на самодельном деревообрабатывающем станке и показала свою эффективность.

    3.1.1. Детали.

    В схеме коммутации обмоток электродвигателя, в качестве коммутационного устройства SA1 следует использовать пакетный переключатель на рабочий ток не менее 16 А, например, переключатель типа ПП2-25/Н3 (двухполюсный с нейтралью, на ток 25 А). Переключатель SA2 может быть любого типа, но на ток не менее 16 А. Если реверс двигателя не требуется, то этот переключатель SA2 можно исключить из схемы.

    Недостатком предложенной схемы включения мощного трехфазного электродвигателя в однофазную сеть можно считать чувствительность двигателя к перегрузкам. Если нагрузка на валу достигнет половины мощности двигателя, то может произойти снижение скорости вращения вала вплоть до полной его остановки. В этом случае снимается нагрузка с вала двигателя. Переключатель переводится сначала в положение «Разгон», а потом в положение «Работа» и продолжают дальнейшую работу.

    Для того, чтобы улучшить пусковые характеристики двигателей кроме пускового и рабочего конденсатора можно использовать еще и индуктивность, что улучшает равномерность загрузки фаз. Обо всем этом написано в статье Устройства запуска трехфазного электродвигателя с малыми потерями мощности

    При написании статьи использовалась часть материалов из книги Пестрикова В.М. "Домашний электрик и не только. "

    Всего хорошего, пишите to Elremont © 2005

    Отправить ответ

      Подписаться  
    Уведомление о
    Adblock
    detector