Устройство и принцип действия асинхронного электродвигателя

Само название этого электротехнического устройства свидетельствует о том, что электрическая энергия, поступающая на него, преобразуется во вращательное движение ротора. Причем прилагательное «асинхронный» характеризует несовпадение, отставание скоростей вращения якоря от магнитного поля статора.

Слово «однофазный» вызывает неоднозначное определение. Связано это с тем, что термин «фаза» в электрике определяет несколько явлений:

сдвиг, разность углов между векторными величинами;

потенциальный проводник двух, трех или четырехпроводной электрической схемы переменного тока;

одну из обмоток статора или ротора трехфазного двигателя либо генератора.

Поэтому сразу уточним, что однофазным электродвигателем принято называть тот, который работает от двухпроводной сети переменного тока, представленной фазным и нулевым потенциалом. Количество обмоток, вмонтированных в различных конструкциях статоров, на это определение не влияют.

Конструкция электродвигателя

По своему техническому устройству асинхронный двигатель состоит из:

1. статора — статической, неподвижной части, выполненной корпусом с расположенными на нем различными электротехническими элементами;

2. ротора, вращаемого силами электромагнитного поля статора.

Механическое соединение этих двух деталей выполнено за счет подшипников вращения, внутренние кольца которых посажены на подогнанные гнезда вала ротора, а внешние вмонтированы в защитные боковые крышки, закрепляемые на статоре.

Ротор

Его устройство у этих моделей такое же, как у всех асинхронных двигателей: на стальном валу смонтирован магнитопровод из шихтованных пластин на основе мягких сплавов железа. На его внешней поверхности выполнены пазы, в которые вмонтированы стержни обмоток из алюминия или меди, закороченные по концам на замыкающие кольца.

В обмотке ротора протекает электрический ток, индуцируемый магнитным полем статора, а магнитопровод служит для хорошего прохождения создаваемого здесь же магнитного потока.

Отдельные конструкции ротора у однофазных двигателей могут быть выполнены из немагнитных или ферромагнитных материалов в форме цилиндра.

Статор

Конструкция статора также представлена:

Его основное назначение заключается в генерировании неподвижного или вращающегося электромагнитного поля.

Статорная обмотка обычно состоит из двух контуров:

У самых простых конструкций, предназначенных для ручной раскрутки якоря, может быть выполнена всего одна обмотка.

Принцип работы асинхронного однофазного электрического двигателя

С целью упрощения изложения материала представим, что обмотка статора выполнена всего одним витком петли. Ее провода внутри статора разносят по кругу на 180 угловых градусов. По ней проходит переменный синусоидальный ток, имеющий положительные и отрицательные полуволны. Он создает не вращающееся, а пульсирующее магнитное поле.

Как возникают пульсации магнитного поля

Разберем этот процесс на примере протекания положительной полуволны тока в моменты времени t1, t2, t3.

Она проходит по верхней части токопровода по направлению к нам, а по нижней — от нас. В перпендикулярной плоскости, представленной магнитопроводом, вокруг проводника возникают магнитные потоки Ф.

Изменяющиеся по амплитуде токи в рассматриваемые моменты времени создают разные по величине электромагнитные поля Ф1, Ф2, Ф3. Поскольку ток в верхней и нижней половине один и тот же, но виток изогнут, то магнитные потоки каждой части направлены встречно и уничтожают действие друг друга. Определить это можно по правилу буравчика или правой руки.

Как видим, при положительной полуволне вращения магнитного поля не наблюдается, а происходит только его пульсация в верхней и нижней части провода, которая еще и взаимно уравновешивается в магнитопроводе. Этот же процесс происходит при отрицательном участке синусоиды, когда токи изменяют направление на противоположное.

Поскольку вращающееся магнитное поле отсутствует, то и ротор останется неподвижным, ибо нет сил, приложенных к нему для начала вращения.

Как создается вращение ротора в пульсирующем поле

Если придать ротору вращение, хотя бы рукой, то он будет продолжать это движение. Для объяснения этого явления покажем, что суммарный магнитный поток изменяется по частоте синусоиды тока от нуля до максимального значения в каждом полупериоде (с изменением направления на противоположное) и состоит из двух частей, образуемых в верхней и нижней ветвях, как показано на рисунке.

Магнитное пульсирующее поле статора состоит из двух круговых с амплитудой Фмакс/2 и двигающихся в противоположных направлениях с одной частотой.

В этой формуле обозначены:

nпр и nобр частоты вращения магнитного поля статора в прямом и обратном направлениях;

n1 — скорость вращающегося магнитного потока (об/мин);

p — число пар полюсов;

f — частота тока в обмотке статора.

Теперь рукой придадим вращение двигателю в одну сторону, и он сразу подхватит движение за счет возникновения вращающегося момента, вызванного скольжением ротора относительно разных магнитных потоков прямого и обратного направлений.

Примем, что магнитный поток прямого направления совпадает с вращением ротора, а обратный, соответственно, будет противоположен. Если обозначить через n2 частоту вращения якоря в об/мин, то можно записать выражение n2

Например, электродвигатель работает от сети 50 Гц с n1=1500, а n2=1440 оборотов в минуту. Его ротор имеет скольжение относительно магнитного потока прямого направления Sпр=0,04 и частоту тока f2пр=2 Гц. Обратное же скольжение Sобр=1,96, а частота тока f2обр=98 Гц.

На основании закона Ампера при взаимодействии тока I2пр и магнитного поля Фпр появится вращающий момент Мпр.

Здесь величина постоянного коэффициента сМ зависит от конструкции двигателя.

При этом также действует обратный магнитный поток Мобр, который вычисляется по выражению:

В итоге взаимодействия этих двух потоков появится результирующий:

Внимание! При вращении ротора в нем наводятся токи разной частоты, которые создают моменты сил с разными направлениями. Поэтому якорь двигателя будет совершать вращение под действием пульсирующего магнитного поля в ту сторону, с которой он начал вращение.

Во время преодоления однофазным двигателем номинальной нагрузки создается небольшое скольжение с основной долей прямого крутящего момента Мпр. Противодействие тормозного, обратного магнитного поля Мобр сказывается совсем незначительно из-за различия частот токов прямого и обратного направлений.

f2обр обратного тока значительно превышает f2пр, а создаваемое индуктивное сопротивление Х2обр сильно превышает активную составляющую и обеспечивает большое размагничивающее действие обратного магнитного потока Фобр, который в итоге этого уменьшается.

Поскольку коэффициент мощности у двигателя под нагрузкой небольшой, то обратный магнитный поток не может оказать сильное воздействие на вращающийся ротор.

Когда же одна фаза сети подана на двигатель с неподвижным ротором (n2=0), то скольжения, как прямое, так и обратное равны единице, а магнитные поля и силы прямого и обратного потоков уравновешены и вращения не возникает. Поэтому от подачи одной фазы невозможно раскрутить якорь электродвигателя.

Как быстро определить частоту вращения двигателя:

Как создается вращение ротора у однофазного асинхронного двигателя

За всю историю эксплуатации подобных устройств разработаны следующие конструкторские решения:

1. ручная раскрутка вала рукой или шнуром;

2. использование дополнительной обмотки, подключаемой на время запуска за счет омического, емкостного или индуктивного сопротивления;

3. расщепление короткозамкнутым магнитным витком магнитопровода статора.

Первый способ использовался в начальных разработках и не стал применяться в дальнейшем из-за возможных рисков получения травм при запуске, хотя он не требует подключения дополнительных цепочек.

Применение фазосдвигающей обмотки в статоре

Читайте также:  Схема с общей базой принцип работы

Чтобы придать начальное вращение ротору к статорной обмотке дополнительно на момент запуска подключают еще одну вспомогательную, но только сдвинутую по углу на 90 градусов. Ее выполняют более толстым проводом для пропускания бо́льших токов, чем протекающие в рабочей.

Схема подключения такого двигателя показана на рисунке справа.

Здесь для включения применяется кнопка типа ПНВС, которая специально создана для таких двигателей и широко использовалась в работе стиральных машин, выпускаемых при СССР. У этой кнопки сразу включаются 3 контакта таким образом, что два крайних после нажатия и отпускания остаются зафиксированы во включенном состоянии, а средний — кратковременно замыкается, а потом под действием пружины возвращается в исходное положение.

Замкнутые же крайние контакты можно отключить нажатием на соседнюю кнопку «Стоп».

Кроме кнопочного выключателя для отключений дополнительной обмотки в автоматическом режиме используются:

1. центробежные переключатели;

2. дифференциальные или токовые реле;

Для улучшения запуска двигателя под нагрузкой применяются дополнительные элементы в фазосдвигающей обмотке.

Подключение однофазного двигателя с пусковым сопротивлением

В такой схеме к статорной дополнительной обмотке последовательно монтируется омическое сопротивление. При этом намотка витков выполняется биффилярным способом, обеспечивающим коэффициент самоиндукции катушки очень близким к нулю.

За счет выполнения этих двух приемов при прохождении токов по разным обмоткам между ними возникает сдвиг по фазе порядка 30 градусов, чего вполне достаточно. Разность углов создается за счет изменения комплексных сопротивлений в каждой цепи.

При этом методе еще может встречаться пусковая обмотка с заниженной индуктивностью и увеличенным сопротивлением. Для этого применяют намотку с маленьким числом витков провода заниженного поперечного сечения.

Подключение однофазного двигателя с конденсаторным запуском

Емкостной сдвиг токов по фазе позволяет создать кратковременное подключение обмотки с последовательно соединенным конденсатором. Эта цепочка работает только во время выхода двигателя на режим, а затем отключается.

У конденсаторного запуска создается наибольший крутящий момент и более высокий коэффициент мощности, чем при резистивном или индуктивном способе запуска. Он может достигать величины 45÷50% от номинального значения.

В отдельных схемах к цепочке рабочей обмотки, которая постоянно включена, тоже добавляют емкость. За счет этого добиваются отклонения токов в обмотках на угол порядка π/2. При этом в статоре сильно заметен сдвиг максимумов амплитуд, который обеспечивает хороший крутящий момент на валу.

За счет этого технического приема двигатель при пуске способен выработать больше мощности. Однако, такой метод используют только с приводами тяжелого запуска, например, для раскрутки барабана стиральной машины, заполненного бельем с водой.

Конденсаторный запуск позволяет изменять направление вращения якоря. Для этого достаточно сменить полярность подключения пусковой или рабочей обмотки.

Подключение однофазного двигателя с расщепленными полюсами

У асинхронных двигателей с небольшой мощностью порядка 100 Вт используют расщепление магнитного потока статора за счет включения в полюс магнитопровода короткозамкнутого медного витка.

Разрезанный на две части такой полюс создает дополнительное магнитное поле, которое сдвинуто от основного по углу и ослабляет его в месте охваченного витком. За счет этого создается эллиптическое вращающееся поле, образующее момент вращения постоянного направления.

В подобных конструкциях можно встретить магнитные шунты, выполненные стальными пластинками, которые замыкают края наконечников статорных полюсов.

Двигатели подобных конструкций можно встретить в вентиляторных устройствах обдува воздуха. Они не обладают возможностью реверса.

Из всего спектра выпускаемых в настоящее время электрических моторов наибольшее распространение получил двигатель асинхронный трёхфазный. Практически половина производимой в мире электроэнергии используется именно этими машинами. Они широко применяются в металлообрабатывающей и деревообрабатывающей промышленности. Асинхронный двигатель незаменим на фабриках и насосных станциях. Без таких машин не обойтись и в быту, где они используются и в другой домашней технике, и в ручном электроинструменте.

Область применения этих электрических машин расширяется с каждым днём, так как совершенствуются и сами модели, и используемые для их изготовления материалы.

Каковы же основные части этой машины

Разобрав двигатель асинхронный трехфазный, можно наблюдать два главных элемента.

Одна из важнейших деталей — статор. На фото сверху эта часть двигателя расположена слева. Он состоит из следующих основных элементов:

1. Корпус. Он необходим для соединения всех деталей машины. Если двигатель небольшой, то корпус изготавливают цельнолитым. В качестве материала используют чугун. Применяются также сталь или сплавы алюминия. Иногда корпус малых двигателей совмещает функции сердечника. Если же двигатель имеет большие размеры и мощность, то корпус сваривают из отдельных частей.

2. Сердечник. Этот элемент двигателя запрессовывается в корпус. Служит он для улучшения качеств магнитной индукции. Выполняется сердечник из пластин электрической стали. Для того чтобы снизить потери, неизбежные при появлении вихревых токов, каждая пластина покрывается слоем специального лака.

3. Обмотка. Она размещается в пазах сердечника. Состоит из витков медной проволоки, которые собираются в секции. Соединённые в определённой последовательности, они образуют три катушки, которые в совокупности являются обмоткой статора. Подключается она непосредственно к сети, поэтому называется первичной.

Ротор — это подвижная часть двигателя. На фото он находится справа. Служит он для преобразования силы магнитных полей в механическую энергию. Состоит ротор асинхронного двигателя из следующих деталей:

1. Вал. На хвостовиках его закреплены подшипники. Они запрессовываются в щиты, крепящиеся болтами к торцовым стенкам коробки статора.

2. Сердечник, который собирается на валу. Состоит из пластин специальной стали, обладающей таким ценным свойством, как низкое сопротивление магнитным полям. Сердечник, обладая формой цилиндра, и является основой для укладки обмотки якоря. Роторная, или, как её ещё называют, вторичная обмотка получает энергию благодаря магнитному полю, которое появилось вокруг катушек статора при прохождении по ним электрического тока.

Двигатели по типу изготовления подвижной части

1. Имеющие короткозамкнутую обмотку ротора. Один из вариантов исполнения этой детали показан на рисунке.

Асинхронный двигатель с короткозамкнутым ротором имеет обмотку, сделанную из алюминиевых стержней, которые располагаются в пазах сердечника. В торцевой части они замкнуты кольцами накоротко.

2. Электродвигатели, имеющие ротор, изготовленный с контактными кольцами.

У обоих типов асинхронных двигателей конструкция статора одинаковая. Различаются они только исполнением якоря.

Каков же принцип работы

Якорь трёхфазного асинхронного двигателя, исполненный подобным образом, приводится во вращение благодаря эффекту возникновения переменного магнитного поля в статорных катушках. Чтобы понять, каким образом это происходит, необходимо вспомнить физический закон самоиндукции. Он гласит, что вокруг проводника, по которому проходит поток заряженных частиц, возникает магнитное поле. Величина его будет прямо пропорциональна индуктивности провода и интенсивности протекающего в нём потока заряженных частиц. Кроме того, это магнитное поле формирует силу с определённой направленностью. Именно она нас и интересует, так как является причиной вращения ротора. Для эффективной работы двигателя необходимо иметь мощный магнитный поток. Создаётся он благодаря специальному способу монтажа первичной обмотки.

Известно, что источник питания имеет переменное напряжение. Следовательно, магнитное поле вокруг статора будет иметь такую же характеристику, напрямую зависящую от изменения тока в подающей сети. Примечательно то, что каждая фаза смещена одна относительно другой на 120˚.

Что происходит в обмотке статора

Каждая фаза сети питания подключается к соответствующей катушке статора, поэтому возникающее вокруг них магнитное поле будет смещено на 120˚. Источник питания имеет переменное напряжение, следовательно, вокруг катушек статора, которыми располагает асинхронный двигатель, будет возникать переменное магнитное поле. Схема асинхронного двигателя собирается так, чтобы магнитное поле, возникающее вокруг катушек статора, постепенно изменялось и последовательно переходило от одной обмотки к другой. Таким образом создаётся эффект вращающегося магнитного поля. Можно вычислить его частоту вращения. Измеряться она будет в оборотах за минуту. Определяется по формуле: n=60f/p, где f — это частота переменного тока в подключенной сети (Гц), p — соответствует числу пар полюсов, смонтированных на статоре.

Читайте также:  Подключение провода интернет кабеля по цветам

Как работает ротор

Теперь необходимо рассмотреть, какие процессы возникают во вторичной обмотке. Асинхронный двигатель с короткозамкнутым ротором имеет конструкционную особенность. Дело в том, что к его якорной обмотке напряжение не подводится. Оно там возникает благодаря магнитоиндукционной связи с первичной обмоткой. Поэтому и происходит процесс, обратный тому, что наблюдался в статоре, в соответствии с законом, который гласит, что при пересечении проводника, а в нашем случае это короткозамкнутая обмотка ротора, магнитным потоком в нём возникает электрический ток. Откуда берётся магнитное поле? Оно возникло вокруг первичной катушки при подключении трёхфазного источника питания.

Соединим статор и ротор. Что получится?

Таким образом, имеем асинхронный короткозамкнутый двигатель с ротором, в обмотке которого проходит электрический ток. Он и будет причиной возникновения магнитного поля вокруг якорной обмотки. Однако полярность этого потока будет отличаться от созданного статором. Соответственно, и сила, образуемая им, будет вступать в противодействие с той, которая вызвана магнитным полем первичной обмотки. Это и приведёт в движение ротор, так как на нём собрана вторичная катушка, и хвостовики вала якоря закреплены в корпусе двигателя на подшипниках.

Рассмотрим ситуацию взаимодействия сил, возникающих от магнитных полей статора и ротора, с течением времени. Знаем, что магнитное поле первичной обмотки вращается и обладает определённой частотой. Созданная им сила будет перемещаться, имея аналогичную скорость. Это заставит асинхронный двигатель заработать. И его ротор будет свободно вращаться вокруг оси.

Эффект скольжения

Ситуация, когда силовые потоки ротора как бы отталкиваются от вращающегося магнитного поля статора, получила название скольжения. Следует отметить, что частота асинхронного двигателя (n1) всегда меньше той, с которой перемещается магнитное поле статора. Объяснить это можно так. Чтобы в роторной обмотке возник ток, она должна быть пересечена магнитным потоком с определённой угловой скоростью. И поэтому справедливо утверждение, что скорость вращения вала больше либо равна нулю, но меньше интенсивности перемещения магнитного поля статора. Ротор имеет частоту вращения, зависящую от силы трения в подшипниках, а также от величины отбора мощности с вала ротора. Поэтому он как бы отстаёт от магнитного поля статора. Именно из-за этого частота называется асинхронной.

Таким образом, электроэнергия питающего источника преобразовалась в кинетическую энергию вращающегося вала. Скорость его вращения прямо пропорциональна частоте тока питающей сети и количеству пар полюсов статора. Для увеличения частоты вращения якоря можно использовать частотные преобразователи. Однако работа этих устройств должна быть согласована с количеством пар полюсов.

Как подключить двигатель к источнику питания

Чтобы осуществить пуск асинхронного двигателя, его необходимо подключить к сети трёхфазного тока. Схема асинхронного двигателя собирается двумя способами. На рисунке показана схема соединения выводов двигателя, в которой статорные обмотки собраны способом «звезда».

На этом рисунке изображён другой способ соединения, именуемый «треугольник». Собираются схемы в клеммной коробке, закреплённой на корпусе.

Следует знать, что начала каждой из трёх катушек, их ещё называют обмотками фаз, именуются С1, С2, С3 соответственно. Аналогично подписываются концы, которые имеют названия С4, С5, С6. Если в клеммной коробке нет маркировки выводов, то начала и концы придётся определить самостоятельно.

Как сделать реверс

При возникновении потребности осуществить пуск асинхронного двигателя, изменив направление вращения якоря, надо просто поменять местами два провода подключаемого источника трехфазного напряжения.

Однофазный асинхронных двигателей

В быту проблематично использовать трёхфазные двигатели из-за отсутствия требуемого источника напряжения. Поэтому существует однофазный асинхронный двигатель. Он также имеет статор, но с существенным конструкционным отличием. Оно заключается в количестве и способе расположения обмоток. Это определяет и схему запуска машины.

Если однофазный асинхронный двигатель имеет статор с двумя обмотками, то расположены они будут со смещением по окружности под углом в 90˚. Катушки называются пусковой и рабочей. Соединяются они параллельно, но, чтобы создать условия для появления вращающееся магнитного поля, дополнительно вводится активное сопротивление или конденсатор. Это создаёт сдвиг фаз токов обмоток, близкий к 90˚, благодаря чему создаётся условие для образования вращающегося магнитного поля.

Если статор имеет только одну катушку, то подключённый к ней однофазный источник питания будет причиной пульсирующего магнитного поля. В замкнутой накоротко обмотке ротора появится переменный ток. Он станет причиной возникновения своего магнитного потока. Результирующая двух образовавшихся сил будет равна нулю. Поэтому для запуска двигателя, имеющего такую конструкцию, требуется дополнительный толчок. Создать его можно, подключив конденсаторную схему пуска.

Подключить двигатель к однофазной цепи

Изготовленный для работы от трёхфазного источника питания электромотор может работать и от домашней однофазной сети, но при этом существенно снизятся его характеристики, такие как КПД, коэффициент мощности. Кроме того, снизятся мощность и пусковые показатели.

Если же без подключения не обойтись, то требуется из трёх обмоток статора собрать схему, где их будет только две. Одна рабочая, а другая пусковая. Например, есть три катушки с началами С1, С2, С3 и концами С4, С5, С6 соответственно. Для создания первой (рабочей) обмотки двигателя объединяем концы С5 и С6, а их начала С3 и С2 подключаем к источнику однофазного тока, например, бытовой сети 220 вольт. Роль второй, пусковой обмотки, будет выполнять оставшаяся незадействованная катушка стартера. Она подключается к источнику питания через конденсатор, соединённый с ней последовательно.

Параметры асинхронного двигателя

При подборе таких машин, а также при дальнейшей их эксплуатации необходимо учитывать характеристики асинхронного двигателя. Они бывают энергетические — это коэффициент полезного действия, коэффициент мощности. Важно учитывать и механические показатели. Основным из них считается зависимость между скоростью вращения вала и рабочим усилием, прикладываемым к нему. Существуют ещё пусковые характеристики. Они определяют пусковой, минимальный и максимальный моменты и их соотношение. Важно также знать, каков пусковой ток асинхронного двигателя. Для наиболее эффективного использования двигателя необходимо учитывать все эти параметры.

Нельзя оставить без внимания вопрос энергосбережения. В последнее время он рассматривается не только с позиции уменьшения эксплуатационных затрат. Экономичность электродвигателей снижает уровень экологических проблем, связанных с производством электроэнергии.

Перед производителями постоянно ставятся задачи разработки и выпуска энергосберегающих двигателей, повышения эксплуатационного ресурса, уменьшения шумового уровня.

Улучшить энергосберегающие показатели можно путём снижения потерь при эксплуатации. А они напрямую зависят от рабочей температуры машины. Кроме того, совершенствование этой характеристики неизбежно приведёт к увеличению срока эксплуатации двигателя.

Снизить температуру обмоток можно, применяя вентилятор наружного обдува, закреплённый на хвостовике вала ротора. Но это приводит к неизбежному повышению шума, производимого двигателем при работе. Особенно ощутим этот показатель при высокой скорости вращения ротора.

Таким образом, видно, что асинхронный двигатель имеет один существенный недостаток. Он не способен поддерживать постоянную частоту вращения вала при возрастающих нагрузках. Зато такой двигатель имеет множество преимуществ по сравнению с образцами электродвигателей других конструкций.

Во-первых, он имеет надёжную конструкцию. Работа асинхронного двигателя не вызывает никаких сложностей при его использовании.

Во-вторых, асинхронный двигатель экономичен в производстве и эксплуатации.

В-третьих, эта машина универсальна. Имеется возможность её использования в любых устройствах, которые не требуют точного поддержания частоты вращения вала якоря.

В-четвёртых, двигатель с асинхронным принципом действия востребован и в быту, получая питание только от одной фазы.

Современное промышленное производство, как постоянно динамично развивающаяся система, требует применения для решения различных задач новых и инновационных технических решений. Вместе с тем, многие производства и сейчас используют в качестве двигателей станков, машин и различных механизмов старых надежных асинхронных двигателей.

Читайте также:  Какая из приведенных пластмасс является термореактивной

Среди применяемых в производстве электронных систем и электрических машин, особое место занимает асинхронный двигатель – электрическая с электронным блоком управления машина, использующая переменный ток для преобразования электрической энергии в механическую.

Более глубокое раскрытие этого понятия основано на принципе использования магнитного поля для создания вращательного движения – статор создает магнитное поле, несколько большее по частоте, чем частота магнитного поля вращающегося ротора.

Магнитное поле заставляет вращаться ротор, при этом, его частота вращения несколько меньше, чем изменение магнитного поля статора, он как бы пытается догнать образовываемое статором поле.

Двигатели такого принципа являются наиболее распространенными видами электрических машин – это наиболее простой и экономичный тип преобразования электрической энергии переменного тока во вращательную механическую энергию.

Как и у большинства технически сложных механизмов, у таких моторов есть масса положительных сторон, главная из которых является отсутствие электрического контакта между подвижными и неподвижными частями машины.

Это достоинство асинхронников и является основным при выборе моделей двигателей в конструкторских разработках – отсутствие коллектора и щеток, контакта между статором и ротором значительно повышают надежность и удешевляют производство таких моторов.

Однако, следует заметить, что это правило справедливо только к одному из видов (хотя и наиболее распространенному виду) – двигателям с короткозамкнутым ротором.

Описание схемы

Работу асинхронного электродвигателя, предназначенного для обычной электросети переменного электрического тока можно описать следующей схемой:

  1. На обмотки статора двигателя подается переменный электрический ток от каждой фазы (в случае, если двигатель трехфазный, если ток однофазный, то включение остальных обмоток происходит посредством включения в схему пусковых конденсаторов, играющих роль имитации трехфазной сети).
  2. В результате подачи напряжения, в каждой из имеющихся обмоток создается электрическое поле с частотой напряжения, и поскольку они имеют смещение на 120 градусов относительно друг друга, то происходит смещение подачи как во времени (даже ничтожно малого), так и в пространстве (тоже достаточно небольшого).
  3. Получившийся в результате вращающийся магнитный поток статора своей силой создает в роторе, вернее в его проводниках, электродвижущую силу.
  4. Созданный в статоре магнитный поток, взаимодействуя с магнитным полем ротора, создает пусковой момент – магнитное поле которого стремится повернуться в направлении магнитного поля статора.
  5. Магнитное поле постепенно нарастая и превышая так называемый тормозной момент, проворачивает ротор.

Устройство

Наиболее наглядно представить конструкцию агрегата можно на примере асинхронного двигателя, имеющего короткозамкнутый ротор, второй вид электромоторов имеет несколько иную конструкцию, это вызвано тем, что они используют промышленную сеть в 380 Вольт.

Основными составными частями такой электрической машины являются статор и ротор, которые не соприкасаются между собой и имеют воздушный зазор. Такая конструкция основных частей связана с тем, что в состав обеих основных частей электромотора входят так называемые активные части – состоящие из металлического проводника обмотка возбуждения.

Для каждой части имеются своя соответственно статорная и роторная обмотки и стальной сердечник – магнитопровод. Это основные части электродвигателя, принципиально необходимые для работы машины, все остальные части – корпус, подшипники качения, вал, вентилятор – это конструктивно необходимые, но абсолютно не влияющие на принцип работы прибора.

Они во многом играют важную роль, например, подшипники качения, обеспечивают возможность плавности хода, корпус защищает от механического воздействия на основные рабочие части, вентилятор обеспечивает обдув двигателя и отвод тепла, выделяемого при работе, но на принцип преобразования электрической энергии в механическую не влияют.

Итак, основными частями асинхронного электромотора, как электрической машины являются:

  1. Статор – основной элемент электромотора, состоящая из трехфазной (или многофазной) обмотки. Особенностью обмотки является определенный порядок расположения витков – проводники равномерно расположены в пазах, имеющих угол 120 градусов по всей окружности.
  2. Ротор – второй основной элемент агрегата, представляющий собой цилиндрический сердечник с залитыми алюминием пазами. Такая конструкция из-за своей особенности называется «беличья клетка» или короткозамкнутым типом ротора. В ней медные стержни замкнуты на концах кольцом с обеих сторон цилиндра.

Трехфазные обмотки, а конструктивно их по одной на каждую фазу, соединяются подобно обмоткам статора или «звездой» или «треугольником», и концы обмоток этих выводятся на контактные кольца, которые вращаются на валу, электрический ток на них передается через щетки из графита. Этот тип электродвигателей имеет большую мощность и применяется уже в промышленных машинах и станках.

Область применения

В виду особенности конструкции и простоты изготовления, подобные электромоторы нашли основное применение в машинах и механизмах в которых не требуется большое усилие и мощность при работе.

В основном, такие моторы устанавливаются практически на всех бытовых приборах:

  • мясорубки;
  • фены;
  • электрические миксеры;
  • бытовые вентиляторы;
  • небольшие маломощные бытовые станки;

Трехфазные асинхронные моторы имеют различную мощность, от 150 Вт до нескольких киловатт, и применяются в основном в промышленности в качестве моторов для машин и механизмов.

Применение подобного типа моторов обусловлено приемлемым с точки зрения соотношения мощность/производительность, к тому же, как и их простейшие собраться такие двигатели не требуют большого внимания и кропотливого обслуживания, в особенности те типы корпуса, которые специально разработаны для работы в тяжелых условиях производства.

В виду различных конструкторских задач, стоящих перед разрабатываемыми машинами и механизмами в промышленном, серийном производстве, нашли свое применение асинхронные линейные электромоторы основных четырех видов:

Моторы для однофазной сети

С короткозамкнутым ротором.

Двигатели для двухфазной сети

С короткозамкнутым ротором.

Трехфазные асинхронные двигатели

С короткозамкнутым ротором.

Трехфазные двигатели

С фазным ротором.

Особенностью конструкции является заложенный принцип работы однофазного асинхронного двигателя – у него только одна обмотка статора рабочая. А вот для пуска используется дополнительная обмотка, ее назначение – подключение к сети посредством конденсатора. Такое подключение используется для создания начального сдвига фаз и пускового момента, проще говоря, для того, чтобы вал начал вращаться.

Второй тип электрических моторов – двухфазные двигатели, имеют две рабочие обмотки. Такое техническое решение позволяет наиболее эффективно работать от однофазной сети, используя фазосдвигающий конденсатор для получения вращающегося магнитного поля.

Трехфазные асинхронники, имеют в своем составе по одной обмотке на каждую фазу подаваемого напряжения – три рабочие обмотки с соответствующим сдвигом относительно друг друга на 120 градусов. Это позволяет при включении в трехфазную сеть, получить электрическое поле, приводящее в движение короткозамкнутый ротор.

Для четвертого трехфазного асинхронника с фазным ротором, статор устроен таким же образом – три обмотки с соединением по типу звезда.

Принцип работы частотных преобразователей

Вместе со всеми положительными качествами асинхронных двигателей, существует и неприятные моменты – слишком большой пусковой ток и невозможность регулировать скорость вращения ротора.

Решить эти проблемы можно, используя частотные преобразователи.

Принцип работы такого устройства в двух словах можно описать следующим образом: с помощью электронной схемы выпрямителя, сетевое напряжение сначала сглаживается, а после, фильтруется с помощью конденсаторов.

Использование таких частотных преобразователей при пуске, позволяет избежать обратного вращения вала двигателя, и существенно сократить (до 50%) потребляемую энергию.

Отправить ответ

  Подписаться  
Уведомление о
Adblock
detector