Все виды транзисторов и их обозначения

Прежде чем рассматривать типы транзисторов, следует выяснить, что вообще представляет собой транзистор и для чего используется.

Что такое транзистор

Транзистором называется полупроводниковый триод, представляющий собой компонент, используемый в области радиоэлектроники, изготавливаемый из полупроводниковых материалов. Он имеет три вывода, позволяющие управлять в цепи электрическим током с помощью входного сигнала.

Из-за своих качеств применяется в тех случаях, когда необходимо преобразовать, сгенерировать или усилить электрические сигналы. Название транзистора применяется и для других устройств, имитирующих основное качество транзистора – способность изменять сигнал в двух различных состояниях, при одновременном изменении сигнала управляющего электрода.

Виды и характеристика

Все транзисторы подразделяются на два вида – NPN и PNP. В этих на первый взгляд сложных аббревиатурах, нет ничего особо сложного. Данными буквенными обозначениями определяется порядок наложения специфических слоев. Такими слоями являются pn-переходы в полупроводниковых материалах, использованных для их изготовления. Глядя визуально на любой полупроводник, невозможно определить тип полупроводниковой структуры, расположенной внутри корпуса. Эти данные обозначаются маркировкой, нанесенной на корпус. Тип транзистора необходимо знать заранее, поскольку использование его в схеме может быть самым различным.

Следует помнить о том, что NPN и PNP совершенно разные. Поэтому их нельзя просто так перепутать или заменить между собой. Заменить один на другой возможно при определенных условиях. Основное условие – значительное изменение схемы включения этих транзисторов. Таким образом, для определенных узлов радиотехнических устройств, применяются только свои, конкретные марки, в противном случае, устройство просто выйдет из строя, и не будет работать.

Технологические различия

Помимо типа pn-перехода, все они различаются технологией применяемой для их изготовления.

В связи с этим, можно отметить два видаа транзисторов, различающихся параметрами:

  • Биполярные — отличаются подачей в их базу тока небольшой величины. Этот ток, в свою очередь, служит для управления количеством тока, проходящего между эмиттером и коллектором.
  • Полевые — оборудуются тремя выводами, носящими название затвор, сток и исток. В данном случае, на затвор транзистора воздействует не ток, а напряжение. Эти транзисторы отличаются различной полярностью.

Транзи́стор (англ. transistor ), полупроводнико́вый трио́д — радиоэлектронный компонент из полупроводникового материала, обычно с тремя выводами [1] , способный от небольшого входного сигнала управлять значительным током в выходной цепи, что позволяет использовать его для усиления, генерирования, коммутации и преобразования электрических сигналов. В настоящее время транзистор является основой схемотехники подавляющего большинства электронных устройств и интегральных микросхем.

Транзисторами также называются дискретные электронные приборы, которые, выполняя функцию одиночного транзистора, имеют в своем составе много элементов, конструктивно являясь интегральной схемой, например составной транзистор или многие транзисторы большой мощности [2] .

Транзисторы по структуре, принципу действия и параметрам делятся на два класса — биполярные и полевые (униполярные). В биполярном транзисторе используются полупроводники с обоими типами проводимости, он работает за счет взаимодействия двух, близко расположенных на кристалле, p-n переходов и управляется изменением тока через база-эмиттерный переход, при этом вывод эмиттера всегда является общим для управляющего и выходного токов. В полевом транзисторе используется полупроводник только одного типа проводимости, расположенный в виде тонкого канала, на который воздействует электрическое поле изолированного от канала затвора [3] , управление осуществляется изменением напряжения между затвором и истоком. Полевой транзистор, в отличие от биполярного, управляется напряжением, а не током. В настоящее время в аналоговой технике доминируют биполярные транзисторы (БТ) (международный термин — BJT, bipolar junction transistor). В цифровой технике, в составе микросхем (логика, память, процессоры, компьютеры, цифровая связь и т. п.), напротив, биполярные транзисторы почти полностью вытеснены полевыми. В 1990-е годы был разработан новый тип гибридных биполярно-полевых транзисторов — IGBT которые сейчас широко применяются в силовой электронике.

К 1980-м годам транзисторы, благодаря своей миниатюрности, экономичности, устойчивости к механическим воздействиям и невысокой стоимости практически полностью вытеснили электронные лампы из малосигнальной электроники. Благодаря своей способности работать при низких напряжениях и значительных токах, транзисторы позволили уменьшить потребность в электромагнитных реле и механических переключателях в оборудовании, а благодаря способности к миниатюризации и интеграции позволили создать интегральные схемы, заложив основы микроэлектроники. С 1990-х в связи с появлением новых мощных транзисторов, стали активно вытесняться электронными устройствами трансформаторы, электромеханические и тиристорные ключи в силовой электротехнике, начал активно развиваться Частотно-регулируемый привод и инверторные преобразователи напряжения.

На принципиальных схемах транзистор обычно обозначается «VT» или «Q» с добавлением позиционного индекса, например, VT12. До 1970-х гг. в русскоязычной литературе и документации также применялись обозначения «Т», «ПП» (полупроводниковый прибор) или «ПТ» (полупроводниковый триод).

Содержание

История [ править | править код ]

Изобретение транзистора, являющееся одним из важнейших достижений XX века [5] , стало следствием длительного развития полупроводниковой электроники, которое началось в 1833 году, когда Майкл Фарадей провёл первые эксперименты с полупроводниковым материалом — сульфидом серебра.

Читайте также:  Самоделки из металла для гаража

В 1874 году немецкий физик Карл Фердинанд Браун впервые обнаружил явление односторонней проводимости контакта металл—полупроводник.

В 1906 году инженер Гринлиф Виттер Пиккард изобретает точечный полупроводниковый диод-детектор.

В 1910 году английский физик Уильям Икклз обнаружил у некоторых полупроводниковых диодов способность генерировать электрические колебания, а инженер Олег Лосев в 1922 году самостоятельно разработал диоды, обладающие при некоторых напряжениях смещения отрицательным дифференциальным сопротивлением, с помощью которых впервые успешно использовал усилительные и генераторные свойства полупроводников (Кристадинный эффект), в детекторных и гетеродинных радиоприёмниках собственной конструкции.

Особенностью этого периода развития было то, что физика полупроводников была ещё плохо изучена, все достижения являлись следствием экспериментов, учёные затруднялись объяснить, что происходит внутри кристалла, часто выдвигая ошибочные гипотезы.

В то же время на рубеже 1920—1930 годов в радиотехнике началась эпоха бурного индустриального развития электронных ламп, физика которых была изучена, и в этом направлении работала основная масса учёных-радиотехников, в то время как хрупкие и капризные полупроводниковые детекторы открытой конструкции, в которых нужно было при помощи металлической иглы вручную искать на кристалле «активные точки», стали уделом кустарей-одиночек и радиолюбителей, строивших на них простейшие радиоприемники. Потенциальных перспектив полупроводников никто не видел.

Создание биполярного и полевого транзисторов произошло разными путями.

Полевой транзистор [ править | править код ]

Первый шаг в создании полевого транзистора сделал австро-венгерский физик Юлий Эдгар Лилиенфельд, который предложил метод управления током в образце путём подачи на него поперечного электрического поля, которое, воздействуя на носители заряда, будет управлять проводимостью. Патенты были получены в Канаде (22 октября 1925 года) и Германии (1928 год) [6] [7] .

В 1934 году немецкий физик Оскар Хайл (англ.) русск. в Великобритании также запатентовал «бесконтактное реле», основанное на аналогичном принципе. Однако несмотря на то, что полевые транзисторы основаны на простом электростатическом эффекте поля и по протекающим в них физическим процессам проще биполярных, создать работоспособный образец полевого транзистора долго не удавалось.

Создатели не могли обойти неизвестные на тот момент явления в поверхностном слое полупроводника, которые не позволяли управлять электрическим полем внутри кристалла у транзисторов такого типа (МДП-транзистор — металл, диэлектрик, полупроводник). Работоспособный полевой транзистор был создан уже после открытия биполярного транзистора. В 1952 году Уильям Шокли теоретически описал модель полевого транзистора другого типа, модуляция тока в котором, в отличие от ранее предложенных МДП [8] структур, осуществлялась изменением толщины проводящего канала за счёт расширения или сужения обеднённой области, прилегающего к каналу р-n-перехода. Это происходило при подаче на переход управляющего напряжения запирающей полярности затворного диода. Транзистор получил название «полевой транзистор с управляющим р-n-переходом» (мешающие работе поверхностные явления устранялись, так как проводящий канал находился внутри кристалла).

Первый полевой МДП-транзистор, запатентованный ещё в 1920-е годы и сейчас составляющий основу компьютерной индустрии, впервые был создан в 1960 году после работ американцев Канга и Аталлы, предложивших в качестве слоя затворного диэлектрика формировать на поверхности кремниевого кристалла с помощью окисления поверхности кремния тончайший слой диоксида кремния, изолирующий металлический затвор от проводящего канала, такая структура получила название МОП-структура (Металл-Окисел-Полупроводник).

В 90-х годах XX века МОП-технология стала доминировать над биполярной [9]

Биполярный транзистор [ править | править код ]

В отличие от полевого, первый биполярный транзистор создавался экспериментально, а его физический принцип действия был объяснён уже позднее.

В 1929—1933 гг., в ЛФТИ, Олег Лосев под руководством А. Ф. Иоффе провёл ряд экспериментов с полупроводниковым устройством, конструктивно повторяющим точечный транзистор на кристалле карборунда (SiC), однако достаточного коэффициента усиления получить тогда не удалось. Изучая явления электролюминесценции в полупроводниках, Лосев исследовал около 90 различных материалов, особенно выделяя кремний, и в 1939 году он вновь упоминает о работах над трёхэлектродными системами в своих записях, но начавшаяся война и гибель инженера в блокадном Ленинграде зимой 1942 года привели к тому, что некоторые его работы оказались утеряны и сейчас неизвестно, насколько далеко он продвинулся в создании транзистора. В начале 1930-х годов точечные трёхэлектродные усилители изготовили также радиолюбители Ларри Кайзер из Канады и Роберт Адамс из Новой Зеландии, однако их работы не были запатентованы и не подвергались научному анализу [5] .

Успеха добилось опытно-конструкторское подразделение Bell Telephone Laboratories фирмы American Telephone and Telegraph, с 1936 года в нём, под руководством Джозефа Бекера, работала группа ученых специально нацеленная на создание твердотельных усилителей. До 1941 года изготовить полупроводниковый усилительный прибор не удалось (предпринимались попытки создания прототипа полевого транзистора). После войны, в 1945 году, исследования возобновились под руководством физика-теоретика Уильяма Шокли, после ещё 2 лет неудач, 16 декабря 1947 года, исследователь Уолтер Браттейн, пытаясь преодолеть поверхностный эффект в германиевом кристалле и экспериментируя с двумя игольчатыми электродами, перепутал полярность приложенного напряжения и неожиданно получил устойчивое усиление сигнала. Последующее изучение открытия, совместно с теоретиком Джоном Бардиным показало, что никакого эффекта поля нет, в кристалле идут ещё не изученные процессы, это был не полевой, а неизвестный прежде, биполярный транзистор. 23 декабря 1947 года состоялась презентация действующего макета изделия руководству фирмы, эта дата стала считаться датой рождения транзистора. Узнав об успехе, уже отошедший от дел Уильям Шокли, вновь подключается к исследованиям и за короткое время создает теорию биполярного транзистора, в которой уже наметил замену точечной технологии изготовления, более перспективной, плоскостной.

Читайте также:  Как посчитать стоимость сварочных работ

Первоначально новый прибор назывался «германиевый триод» или «полупроводниковый триод», по аналогии с вакуумным триодом — электронной лампой схожей структуры, в мае 1948 года в лаборатории прошел конкурс на оригинальное название изобретения, в котором победил Джон Пирс (John R. Pierce), предложивший слово «transistor», образованное путём соединения терминов «transconductance» (активная межэлектродная проводимость) и «variable resistor» или «varistor» (переменное сопротивление, варистор) или, по другим версиям, от слов «transfer» — передача и «resist» — сопротивление.

30 июня 1948 г. в штаб-квартире фирмы в Нью-Йорке состоялась официальная презентация нового прибора, на транзисторах был собран радиоприемник. И все же, мировой сенсации не состоялось, первоначально открытие не оценили по достоинству, ибо первые точечные транзисторы, в сравнении с электронными лампами, имели очень плохие и неустойчивые характеристики.

В 1956 году Уильям Шокли (en:William Shockley), Уолтер Браттейн (en:Walter Houser Brattain) и Джон Бардин (en:John Bardeen) были награждены Нобелевской премией по физике «за исследования полупроводников и открытие транзисторного эффекта» [10] . Интересно, что Джон Бардин вскоре был удостоен Нобелевской премии вторично за создание теории сверхпроводимости.

Создание биполярного транзистора в Европе [ править | править код ]

Параллельно с работами американских ученых, в Европе, биполярный транзистор был создан физиком-экспериментатором Гербертом Матаре (en:Herbert Mataré) и теоретиком Генрихом Велкером (en:Heinrich Welker). В 1944 году, Герберт Матаре, работая в фирме Телефункен, разработал полупроводниковый «дуодиод» (двойной диод), который, конструктивно был похож на будущий точечный биполярный транзистор. Прибор использовался в качестве смесителя в радиолокационной технике, как два, близких по параметрам, выпрямительных точечных диода, выполненных на одном кристалле германия. Тогда же Матаре впервые обнаружил влияние тока одного диода на параметры другого и начал исследования в этом направлении. После войны Герберт Матаре, в Париже, встретился с Иоганном Велкером, где оба физика, работая в филиале американской корпорации Westinghouse Electric, продолжили эксперименты над дуодиодом в инициативном порядке. В начале июня 1948 года, ещё не зная о результатах исследований группы Шокли в Bell Labs, они на основе дуодиода создали стабильно работающий биполярный транзистор, который был назван «транзитрон», однако, патентная заявка на изобретение, отправленная в августе 1948 года, рассматривалась французским бюро патентов очень долго и только в 1952 году был получен патент на изобретение. Серийно выпускаемые фирмой Westinghouse транзитроны, несмотря на то что по качеству они успешно конкурировали с транзисторами, также не смогли завоевать рынок и вскоре работы в этом направлении прекратились [5] .

Развитие транзисторных технологий [ править | править код ]

Несмотря на миниатюрность и экономичность, первые транзисторы отличались высоким уровнем шумов, маленькой мощностью, нестабильностью характеристик во времени и сильной зависимостью параметров от температуры. Точечный транзистор, не являясь монолитной конструкцией, был чувствителен к ударам и вибрациям. Фирма-создатель Bell Telephone Laboratories не оценила перспективы нового прибора, выгодных военных заказов не ожидалось и лицензия на изобретение вскоре начала продаваться всем желающим за 25 тыс. долларов. В 1951 году был создан плоскостной транзистор, конструктивно представляющий собой монолитный кристалл полупроводника, и примерно в это же время появились первые транзисторы на основе кремния. Характеристики транзисторов быстро улучшались и вскоре они стали активно конкурировать с электронными радиолампами.

Позднее транзисторы заменили вакуумные лампы в большинстве электронных устройств, совершив революцию в создании интегральных схем и компьютеров. В начале 21-го века транзистор стал одним из самых массовых изделий, производимых человечеством. В 2013 году на каждого жителя Земли было выпущено около 15 миллиардов транзисторов (большинство из них — в составе интегральных схем) [11] .

С появлением интегральных микросхем началась борьба за уменьшение размера элементарного транзистора. В 2012 году самые маленькие транзисторы содержали считанные атомы вещества [12] . Транзисторы стали основной частью компьютеров и других цифровых устройств. В некоторых конструкциях процессоров их количество превышало миллиард штук.

Классификация транзисторов [ править | править код ]

p-n-p канал p-типа
n-p-n канал n-типа
Биполярные Полевые

Ниже приведена формальная классификация транзисторов, где ток образуется потоком носителей заряда, а состояния, между которыми переключается прибор, определяются по величине сигнала: малый сигнал — большой сигнал, закрытое состояние — открытое состояние, на которых реализуется двоичная логика работы транзистора. Современная технология может оперировать не только электрическим зарядом, но и магнитными моментами, спином отдельного электрона, фононами и световыми квантами, квантовыми состояниями в общем случае.

По основному полупроводниковому материалу [ править | править код ]

Помимо основного полупроводникового материала, применяемого обычно в виде легированного в некоторых частях монокристалла, транзистор содержит в своей конструкции металлические выводы, изолирующие элементы, корпус (пластиковый, металлостеклянный или металлокерамический). Иногда употребляются комбинированные наименования, частично описывающие технологические разновидности (например, «кремний на сапфире» или «металл-окисел-полупроводник»). Однако основная классификация указывает на применённый полупроводниковый материал — кремний, германий, арсенид галлия и др.

Читайте также:  Оксидирование нержавеющей стали в домашних условиях

Другие материалы для транзисторов до недавнего времени не использовались. В настоящее время имеются транзисторы на основе, например, прозрачных полупроводников для использования в матрицах дисплеев. Перспективный материал для транзисторов — полупроводниковые полимеры. Также имеются отдельные сообщения о транзисторах на основе углеродных нанотрубок [13] , о графеновых полевых транзисторах.

Транзистор, иначе называемый полупроводниковым триодом — электронное устройство, основой которого являются полупроводниковые материалы. Основное назначение прибора — возможность, с помощью изменения слабого тока в управляющей цепи, получать усиленный сигнал на выходе. Полупроводниковый триод — одна из основных составляющих схем множества электронных устройств, от радиоприёмника до компьютера.

Типы транзисторов

Определение «транзистор» тесно связано с этимологией этого слова. Оно образовано от двух английских слов: transfer (переносить) и resistor (сопротивление). Действительно, принцип работы устройства связан с переносом (изменением) сопротивления в электрической цепи.

Существуют два основных класса полупроводниковых триодов:

Каждый класс, в свою очередь, делится на несколько разновидностей.

Биполярные:

  • p-n-p тип (прямая проводимость);
  • n-p-n тип (обратная проводимость).

Оба этих типа триодов могут использоваться в одной электронной схеме. Поэтому, для того чтобы не перепутать, какую именно деталь надо использовать в конкретном месте схемы, изображения p-n-p и n-p-n триодов отличаются друг от друга.

Полевые:

  • униполярные с p-n переходом;
  • МДП-транзисторы с изолированным затвором.

Принцип работы устройства

В электронике применяются полупроводники с электронной (n) или дырочной (p) проводимостью. Эти обозначения говорят о том, что в первом случае в полупроводнике преобладают отрицательно заряженные электроны, во втором — положительно заряженные дырки.

Рассмотрим, как устроен транзистор на примере биполярного полупроводникового триода. Внешне прибор выглядит как небольшая деталь в металлическом или пластиковом корпусе с тремя выводами. Внутри — своеобразный бутерброд из трёх слоёв полупроводника. Если центральный слой p-типа, то окружающие его слои — n-типа. Получается триод n-p-n. Если же центр, именуемый также базой, n-типа, то обкладки — из полупроводника с дырочной проводимостью, а структура устройства — p-n-p. Один из внешних слоёв называется эмиттером, другой коллектором. К каждой из этих трёх частей прибора бывает подведён соответствующий вывод.

Краткое пояснение, как работает транзистор, для «чайников» выглядит так. Возьмём для примера транзистор n-p-n, где эмиттер и коллектор являются слоями с преимущественно электронной проводимостью, а база — с дырочной.

Подключаем эмиттер к отрицательному выводу электрической батареи, а базу и коллектор — к положительному. Начинающему любителю электроники можно представить, что триод состоит из двух диодов, причём диод эмиттер — база включён в прямом направлении, и через него протекает ток, а диод база — коллектор включён в обратном направлении, и ток отсутствует.

Предположим, что мы включили в цепь базы переменный резистор, с помощью которого можем регулировать подаваемое на базу напряжение. Какой эффект мы получим при уменьшении напряжения до нуля? Ток в цепи эмиттер-база перестанет течь. Немного увеличим напряжение. Электроны из n — области эмиттера устремятся к базе, подключённой к плюсу батареи.

Важная деталь — база сделана максимально тонкой. Поэтому масса электронов проходит этот слой насквозь и оказывается в коллекторе под воздействием положительного полюса батареи, к которому притягивается. Таким образом, ток начинает проходить не только между эмиттером и базой, но и между эмиттером и коллектором. При этом ток коллектора значительно больше тока базы.

Ещё одно важное обстоятельство: небольшое изменение базового тока вызывает значительно более сильное изменение коллекторного тока. Таким образом, полупроводниковый триод служит для усиления различных сигналов. Обычно биполярные триоды чаще используются в аналоговой технике.

Полевые транзисторы

Этот тип триода отличается от биполярного не свойствами или функциями, а принципом работы. В полевом триоде ток движется от вывода, называемого истоком, к выводу, именуемому стоком, по полупроводнику одного вида проводимости, например, p. А управление силой этого тока производится с помощью изменения напряжения на третьем выводе — затворе.

Такая структура более точно отвечает требованиям современной цифровой техники, где в основном и применяются полевые триоды. Сегодняшние технологические возможности позволяют разместить на кристалле полупроводника площадью 1−2 квадратных сантиметров несколько миллиардов МДП-элементов с изолированным затвором. Таким образом создаются центральные процессоры персональных компьютеров.

Перспективы развития приборов

Перспективы лежат, в первую очередь, в сфере дальнейшей миниатюризации устройств. Так, американские учёные разрабатывают сегодня так называемый одномолекулярный транзистор. Основным элементом такого устройства является молекула бензола, к которой присоединены три электрода.

Если идея оправдает себя, появится возможность создания сверхмощных вычислительных комплексов. Ведь размер молекулы гораздо меньше размера сегодняшних МДП-триодов на кристалле кремниевого чипа.

Отправить ответ

  Подписаться  
Уведомление о
Adblock
detector