Большим кругом называется сечение

  • Главная
  • Репетиторы
  • Учебные материалы
  • Контакты

1. Цилиндр

Цилиндр представляет собой тело, состоящее из двух кругов, не лежащих в одной плоскости и совмещаемых параллельным переносом, и всех отрезков, соединяющих соответствующие точки этих кругов (Рис.1).

Два круга, лежащих в параллельных плоскостях, называются основаниями цилиндра. Отрезки, соединяющие соответствующие точки окружностей кругов, называются образующими.

Так как основания совмещаются параллельным переносом, то они равны. И так как они лежат в параллельных плоскостях, то образующие цилиндра параллельны и равны.

Если образующие перпендикулярны основанию, то цилиндр называется прямым.

Поверхность цилиндра состоит из двух оснований и боковой поверхности. Боковая поверхность состоит из образующих.

Осью цилиндра называется прямая, проходящая через центры оснований. Радиусом цилиндра называется радиус его основания. А высотой цилиндра называется расстояние между плоскостями его оснований.

Сечение цилиндра плоскостями

Если взять сечение цилиндра плоскостью, проходящей по его оси, то получится прямоугольник. (Рис.1) Такое сечение называется осевым. Сечение цилиндра плоскостью, параллельной его оси, также представляет собой прямоугольник. Две его стороны — образующие цилиндра, а две другие стороны — параллельные хорды оснований.

Теорема. Плоскость сечения цилиндра, параллельная его плоскости основания, пересекает его боковую поверхность по окружности, равной окружности основания. (Рис.1.1)

Пусть плоскость α — секущая плоскость, параллельная основанию. Подвергнем плоскость α движению в верх вдоль оси цилиндра. Параллельным переносом совместим плоскость α с плоскостью верхнего основания цилиндра. Таким образом сечение боковой поверхности совпадет с окружностью верхнего основания. Теорема доказана.

Рис. 1.1 Сечения цилиндра плоскостями.

2.Конус

Конусом называется тело, которое состоит из круга — основания конуса, точки, не лежащей в плоскости основания этого конуса — вершины конуса и всех отрезков, соединяющих вершину с точками основания (Рис.2).

Точка, не лежащая в плоскости основания, называется вершиной конуса. Отрезки, соединяющие вершину конуса с точками окружности основания, называются образующими конуса.

Конус называется прямым, если прямая, проведенная из вершины конуса в центр основания, перпендикулярна плоскости основания.

Высотой конуса называется перпендикуляр, опущенный из вершины конуса на плоскость основания. Осью прямого кругового конуса называется прямая, содержащая его высоту.

Сечение конуса плоскостями

Сечение прямого конуса плоскостью, которая проходит через его вершину, представляет собой равнобедренный треугольник. Боковые стороны этого треугольника являются образующими конуса. Сечение, которое проходит через ось конуса, называется осевым.

Теорема. Сечение конуса плоскостью, параллельной основанию, есть круг с центром на оси конуса.

Доказательство. Пусть α — плоскость, параллельная основанию (Рис 2.1). Плоскость α пересекает конус по кругу. Подвергнем сечение конуса гомотетии относительно вершины конуса. Т.е. совместим плоскость α с плоскостью основания конуса. Сечение конуса полностью совпадет с основанием. Следовательно сечение конуса плоскостью есть круг, а сечение боковой поверхности — окружность с центром на оси конуса.

Рис.2.1 Сечение конуса

3. Вписанная и описанная призма

Призма, вписанная в цилиндр, называется призма, у которой плоскости основания совпадают с плоскостями оснований цилиндра, а боковые ребра являются образующими цилиндра.

Призма, описанная около цилиндра, называется призма, у которой плоскости оснований совпадают с плоскостями оснований цилиндра, а боковые грани касаются цилиндра (Рис.3).

Если плоскость проходит через образующую цилиндра и перпендикулярна осевому сечению, то она называется касательной плоскостью к цилиндру.

Рис. 3 Описанная и вписанная призма.

4.Вписанная и описанная пирамида

Пирамида, вписанная в конус, называется пирамида, у которой вершина совпадает с вершиной конуса, а многоугольник в основании вписан в окружность основания конуса.

Пирамидой, описанной около конуса, называется пирамида, у которой вершина совпадает с вершиной конуса, а в многоугольник основания вписано основание окружности конуса.

Касательной плоскостью к конусу называется плоскость, проходящая через образующую конуса (плоскость α) и перпендикулярная плоскости осевого сечения (плоскость β), проходящей через эту образующую (Рис.4).

Рис. 4 Вписанная и описанная пирамида.

5. Шар

Шар это геометрическое тело, состоящее из всех точек пространства, находящихся на расстоянии, не большем данного, от данной точки. (Рис.5). Точка, от которой все остальные точки находятся на расстоянии не большем данного, называется центром шара.

Граница шара называется сферой. Совокупность всех точек сферы удалена от центра на расстояние, равное радиусу. Таким образом, любой отрезок, соединяющий центр шара с точкой сферы, называется радиусом.

Отрезок, соединяющий две точки шаровой поверхности и проходящий через центр шара, называется диаметром. Концы любого диаметра называются диаметрально противоположными точками шара.

Сечение шара плоскостью

Если секущая плоскость проходит через центр шара, например плоскость α, то она называется диаметральной плоскостью. А сечение называется большим кругом (Рис.5.1).

Если секущая плоскость не проходит через центр шара, то в сечении получится также круг. Сформулируем следующую теорему.

Теорема. Любое сечение шара представляет собой круг. Центр этого круга есть основание перпендикуляра, опущенного из центра шара на секущую плоскость.

Пусть β — секущая плоскость. Проведем перпендикуляр из центра шара точки O на плоскость β. Обозначим основание перпендикуляра точкой O’.

Рис. 5.1 Сечение шара плоскостью.

6. Симметрия шара

Теорема. Центр шара является его центром симметрии, а любая диаметральная плоскость является его плоскостью симметрии.

Доказательство. Пусть α — диаметральна плосксоть шара, а Y его произвольная точка (Рис.6). Построим точку Y’, симметричную точке Y относительно плоскости α. Так как отрезок YY’ перпендикулярен плоскости α и делится этой плоскостью пополам точкой пересечения А, то треугольники OYA и OY’A равны по двум сторонам и углу между ними, т.е. OY=OY’. Отрезки OY и OY’ принадлежат шару, так как OY = OY’ ≤ R.

Отложим отрезок OY» симметрично относительно центра шара точки О. Тогда OY = OY» ≤ R. Т.е. точка Y» также принадлежит шару. Следовательно точка О является точкой симметрии шара, а диаметральная плоскость — плоскостью симметрии.

Рис. 6 Симметрия шара.

7. Пример 1

Радиус основания цилиндра 2 м, высота 3 м. Найдите диагональ осевого сечения.

Решение:

Пусть дан цилиндр высотой 3 м и радиусом 2 м (Рис.7). По теореме Пифагора найдем АС:

AС 2 = AD 2 + CD 2 = 4 2 + 3 2 = 25

Рис.7 Задача. Радиус основания цилиндра 2 м.

Пример 2

Высота цилиндра 6 м, радиус основания 5 м. Концы отрезка DC’, длина которого 10 м, лежат на окружностях оснований. Найдите расстояние от этого отрезка до оси цилиндра.

Решение:

Пусть дан цилиндр высотой 6 м с радиусом основания 5 м и отрезком DC’ = 10 м (Рис. 8). Проведем два перпендикуляра C’C и D’D. Так как эти перпендикуляры параллельны, то проведем через них плоскость α. Теперь проведем плоскость β через ось O’O, параллельную плоскости α.

Таким образом, получается, что через две скрещивающиеся прямые OO’ и DC’ проходят две параллельные плоскости α и β. Расстояние между скрещивающимися прямыми равно расстоянию между двумя параллельными плоскостями, в которых эти прямые лежат.

Отсюда следует, что длина перпендикуляра ОЕ и будет расстояние от отрезка DC’ до оси цилиндра OO’.

Найдем хорду DC из прямоугольного треугольника DC’C:

DС’ 2 = DC 2 + CC’ 2

DC 2 = 10 2 — 6 2 = 64, DC = 8 м.

Теперь из прямоугольного треугольника OED найдем ОЕ:

ОЕ 2 = OD 2 — DE 2 = 5 2 — 4 2 = 9

Рис.8 Задача. Высота цилиндра 6 м.

Пример 3

Высота конуса 20 м, радиус основания 25 м. Найдите площадь сечения, проведенного через вершину, если расстояние от него до центра основания конуса равно 12 м.

Решение:

Пусть дан конус высотой 20 м с радиусом основания 25 м. OF = 12 м (Рис. 9). Найдем синус угла OSF из прямоугольного треугольника OSF.

sin OSF = OF / SO = 12 / 20 = 3/5, следовательно, cos OSF = 4/5

Из прямоугольного треугольника OSC найдем SC:

cos OSC = SO / SC, SC = SO / cos OSC = 20/4/5 = 25 м

По теореме Пифагора найдем ОС:

ОC 2 = SC 2 — SO 2 = 25 2 — 20 2 = 225, OC = 15 м.

Из прямоугольного треугольника АОС найдем АC:

АC 2 = АО 2 — ОС 2 = 25 2 — 15 2 = 400, АC = 20 м.

Таким образм, площадь сечения равна:

SASB = AC * SC = 20 * 25 = 500 м 2 .

Рис.9 Задача. Высота конуса 20 м.

Пример 4

Высота конуса 10 м. Радиус основания 6 м. На каком расстоянии от вершины необходимо провести плоскость, параллельную основанию, чтобы площадь сечения была равна половине площади основания.

Решение:

Пусть дан конус высотой 10 м и радиусом основания 6 м (Рис. 10). Обозначим площадь основания как Sб, а площадь сечения как Sм. Найдем площадь большего основания Sб:

Sб = π R 2 = π 6 2 = 36π м 2

Соответственно площадь малого основания Sм будет равна:

Sм = Sб / 2 = 36π / 2 = 18π м 2

Отсюда, радиус сечения СА равен

Рассмотрим треугольники BOS и CAS. Они подобны. Коэффициент подобия составляет k = CA / BO = / 6

Отсюда следует, что SA = k SO = 10 / 6 = 5 м

Таким образом, для того чтобы площадь сечения составляла половину площади основания, расстояние от вершины конуса до плоскости сечения должно составлять 5 м.

Рис.10 Задача. Высота конуса 10 м.

Пример 5

Радиусы оснований усеченного конуса 4 м и 12 м, образующая 10 м. Найдите площадь осевого сечения.

Решение:

Пусть дан усеченный конус. Образующая АС = 10 м и радиусы оснований СЕ = 4 м, АО = 12 м (Рис. 11). Осевое сечение усеченного конуса представляет собой равнобокую трапецию. Отсюда следует, что площадь сечения можно найти как сумму площадей прямоугольника CFTP и двух равных треугольников АСР и TFB.

Найдем площадь двух треугольников АСР и TFB:

AP = AO — CE = 12 — 4 = 8 м

По теореме Пифагора найдем СР:

СР 2 = AC 2 — AР 2 = 10 2 — 8 2 = 36, CP = 6 м

SACP + STFP = 2 SACP = 2 * АР * СР / 2 = 2 * 8 * 6 / 2 = 48 м 2

Теперь найдем площадь прямоугольника SCFTP:

SCFTP = CF * CP = 2 CE * CP = 2 * 4 * 6 = 48 м 2

Таким образом, площадь сечения усеченного конуса составляет:

SАCFВ = SCFTP + 2 SACP = 48 + 48 = 96 м 2 .

Рис.11 Задача. Радиусы оснований усеченного конуса 4 м и 12 м.

Шаром называется тело, которое состоит из всех точек пространства, находящихся на расстоянии, не большем данного, от данной точки. Эта точка называется центром шара, а данное расстояние радиусом шара.

Граница шара называется шаровой поверхностью, или сферой. Таким образом, точками сферы являются все точки шара, которые удалены от центра на расстояние, равное радиусу. Любой отрезок, соединяющий центр шара с точкой шаровой поверхности, также называемой радиусом.

Отрезок, соединяющий две точки шаровой поверхности проходящей через центр шара, называется диаметром. Концы любого диаметра называются диаметрально противоположными точками шара.

Шар, также как цилиндр и конус, является телом вращения. Он получается при вращении полукруга вокруг его диаметра как оси.

Всякое сечение шара плоскостью есть круг. Центр этого круга есть основание перпендикуляра, опущенного из центра шара на секущую плоскость.

Доказательство: Пусть — секущая плоскость и О — центр шара (рис. 1) Опустим перпендикуляр из центра шара на плоскость и обозначим через О’ основание этого перпендикуляра.

Пусть X — произвольная точка шара, принадлежащая плоскости . По теореме Пифагора ОХ2=ОО’2+О’Х2. Так как ОХ не больше радиуса R шара, то О’Х?, т.е. любая точка сечения шара плоскостью находится от точки О’ на расстоянии, не большем , следовательно, она принадлежит кругу с центром О’ и радиусом . Обратно: любая точка Х этого круга принадлежит шару. А это значит, что сечение шара плоскостью есть круг с центром в точке О’. Теорема доказана.

Площадь, проходящая через центр шара, называется диаметрально плоскостью. Сечение шара диаметральной плоскостью называется большим кругом, а сечение сферы — большой окружностью.

Этот раздел содержит задачи ЕГЭ по математике на темы, связанные с нахождением характеристик геометрических тел.

В ЕГЭ 2018 профильного уровня геометрическим телам и объектам в пространстве (линиям, плоскостям, двугранным углам и пр.) посвящены два задания — 8 (с кратким ответом) и 14 (с развёрнутым решением). Они могут различаться по трудности, но по набору рассматриваемых объектов практически неотличимы. В обоих есть тела вращения и многогранники, сечения и проекции, требования определить размеры отдельных элементов — ребер, углов, радиусов оснований и т.д. — и общие характеристики тел, такие как объём, площадь всей или боковой поверхности и пр. Только задание 14 чуть комплекснее, т.е. содержит больше задач на сочетание различных тел, чем предыдущее по номеру.

В ЕГЭ 2018 базового уровня задачи на шар и сферу могут встретиться под номерами 13 или 16.

Если Вы еще не занимались заданиями по стереометрии, то настоятельно рекомендую начать со следующих разделов этого сайта.

  • Конус.
  • Цилиндр.
  • Прямоугольный параллелепипед.
  • Правильная призма.
  • Правильная пирамида.
  • Многогранник.

Там более подробно представлены формулы и описаны свойства названных фигур. А здесь начнем с задач, содержащих сферу и шар.

Задачи, содержащие сферу и шар.

Вспомним еще одно очень похожее определение:

Таким образом, чтобы не смущал вопрос "Чем сфера отличается от шара?", зрительно представьте себе, что сфера это "полый шар" или шар это "заполненная сфера". Более строго математическим языком можно сказать так:

Теперь, когда мы разобрались с шаром и сферой, мы понимаем, что понятия объём, сегмент, сектор, слой относятся к шару. (Шаровой сегмент, шаровой сектор, шаровой слой.) Понятия площадь, криволинейные треугольники, координаты и т.п. относятся к сфере. (Существует целая сферическая геометрия, которая изучает геометрические образы находящиеся на сфере так же, как планиметрия — на плоскости. В частности, с понятием сферических координат вы впервые познакомились на географии: широта и долгота. Координатная сетка состоит из меридианов и параллелей.)
Центр, радиус, диаметр (отрезок, соединяющий две точки сферы, и проходящий через центр), сечения есть и у шара, и у сферы.

Всякое сечение шара плоскостью есть круг. Центр этого круга есть основание перпендикуляра, опущенного из центра шара на секущую плоскость.

Сравните "Всякое сечение сферы плоскостью есть окружность."

Большим кругом (или большой окружностью) называется сечение плоскостью, проходящей через центр.


Плоскость, проходящая через некоторую точку шаровой поверхности (сферы) перпендикулярно радиусу, проведенному в эту точку называется касательной плоскостью. Касательная плоскость имеет с шаром только одну общую точку — точку касания.
Прямая, проходящая через точку шаровой поверхности перпендикулярно к радиусу, проведенному в эту точку, называется касательной. Таких прямых через одну точку можно провести бесконечное множество, но все они будут лежать в одной плоскости — в касательной плоскости шара.

Шаровым сегментом называется часть шара, отсекаемая от него плоскостью.
Поскольку одна плоскость рассекает шар на две части, то на рисунке фактически присутствуют два сегмента, хотя указатель ориентирован на меньший.
Шаровой сектор состоит из шарового сегмента и конуса и получается таким образом: если шаровой сегмент меньше полушария, то к нему добавляется конус с вершиной в центре шара и основанием равным основанию сегмента; если же сегмент больше полушария, то такой конус из него вырезается.
На рисунке представлены два сектора. Задачи чаще решают с тем, к которому отнесен указатель. Параметры второго всегда можно определить вычитанием.
Шаровой слой — это часть шара, "вырезанная" двумя параллельными плоскостями.

Шар, так же, как цилиндр и конус, является телом вращения. Он получается при вращении полукруга вокруг его диаметра, как оси.

Пусть символом R обозначен радиус шара (сферы), а в точке О находится её центр.

верны следующие формулы.

Радиус сечения шара плоскостью

Объём шарового сегмента высотой Н

Объём шарового сектора

Обратите внимание: Шар — предельно симметричное тело. Любой диаметр — ось симметрии. Любой большой круг — плоскость симметрии. Таким образом, шар имеет бесконечное число осей симметрии и бесконечное число плоскостей симметрии. Поэтому задачи с ним очень легко решать с помощью построения плоских сечений. Выбирай любое удобное и переходи к планиметрической задаче.

Прямоугольный параллелепипед описан около сферы радиуса 1. Найдите площадь его поверхности.

Многогранник описан около сферы, следовательно, многогранник снаружи, сфера внутри, и все грани многогранника являются касательными плоскостями сферы.

Прямоугольный параллелепипед является 6-тигранником, имеет 3 пары параллельных граней и прямые двугранные углы. У прямоугольного параллелепипела есть центр — точка пересечения диагоналей — и, как минимум, три плоскости симметрии, проходящие через его центр параллельно граням.

Совместим центр шара и центр параллелепипеда и построим сечения упомянутыми плоскостями симметрии параллелепипеда. Они же будут и плоскостями симметрии сферы.

Одна из этих плоскостей, параллельна основаниям. Вторая представлена на моём рисунке ниже. О третьей подумайте самостоятельно.

В каждой их этих плоскостей сечением сферы будет большая окружность, а сечением параллелепипеда — прямоугольник. При построении этого прямоугольника убеждаемся, что касаться окружности его стороны будут тогда и только тогда, когда они равны между собой и равны диаметру окружности, т.е. в сечении получится квадрат со стороной 2R, где R — радиус сферы. Иначе не будут соблюдены определения плоскостей и прямых касательных к сфере и к окружности.
Таким образом, делаем вывод, что из всех прямоугольных параллелепипедов описать вокруг сферы можно только куб. Из рисунка получаем, что ребро куба равно диаметру сферы.

Проводим вычисления:
Радиус сферы R = 1. Значит сторона квадрата равна 2. Площадь одной из граней, площадь квадрата, равна 4. А площадь поверхности всего куба – это суммарная площадь всех шести граней, т.е. 6×4 = 24.

Ответ:24

Замечания
1) В тексте задания (особенно для базового уровня) часто присутствует рисунок. Иногда составители его туда помещают формально, иногда — в качестве подсказки или намёка к решению. Иногда чертёж при решении задачи действительно необходим, иногда достаточно вспомнить готовую формулу и можно ничего не рисовать. В любом случае на этапе подготовки к экзамену чертёж нужно делать всегда и самостоятельно, чтобы набить руку. Поэтому далее все условия задач без чертежа.
2) В задачах по стереометрии особое значение имеет доказательство каждого утверждения. В заданиях этой группы (задания с коротким ответом) ваших доказательств проверять никто не будет, кроме вас самих! Но они нужны. Ведь без ответа на вопрос "Почему так?" не может быть уверенности, что задача решена верно.
В этой задаче ответы на все "почему" сводятся к "по построению", "из соображений симметрии", "потому, что в точках касания радиус перпендикулярен касательной прямой".

Пример 2

Конус вписан в шар. Радиус основания конуса равен радиусу шара. Объём шара равен 28. Найдите объём конуса.

Конус вписан в шар — конус внутри, сфера снаружи. Вершина конуса находится на сфере, и граница основания конуса (окружность) проходит по сфере. Таким, образом с поверхностью шара конус имеет общую точку и общую линию. На объёмном рисунке они изображены синим цветом.


Конус имеет ось вращения, которая совпадает с одним из диаметров шара. Построим сечение плоскостью, проходящей через эту ось. В сечении получится большой круг и вписанный в него треугольник. Если радиус основания конуса меньше радиуса шара, то в зависимости от высоты конуса, основание треугольника будет находиться ниже или выше центра шара. На рисунке сечений это показано красным контуром или зеленым, соответственно.

По условию задачи радиус основания конуса равен радиусу шара, значит в нашей задаче основание конуса совпадает с большим кругом шара, а рассматриваемому осевому сечению соответствует положение треугольника ABC на нижнем рисунке.

Решение

Объём конуса находится по формуле

Здесь r – радиус основания конуса, на нашем рисунке он совпадает с OC и, следовательно, с радиусом шара R, h – высота конуса, на чертеже она совпадает с отрезком OB, который также является радиусом шара R.

Подставим R вместо r и h в формулу для объёма конуса.

Чтобы определить радиус шара, воспользуемся формулой для его объёма. Ведь именно эта величина дана в условии задачи.

Подставим в эту формулу вместо Vшара число 28 и решим уравнение относительно R 3 .

28 = 4 _ 3 πR 3 ; 28·3 = 4πR 3 ; R 3 = 28·3 ____ 4π = 21 __ π

Подставляем эту величину в полученную выше формулу объёма конуса

Vкон. = 1 _ 3 πR 3 = 1 _ 3 π· 21 __ π = 7.

(Последнюю дробь сократили на 3 и на π.)

Ответ: 7

Замечания
1) Если забыты формулы для конуса, их можно повторить, перейдя по ссылке.
2) Старайтесь не делать лишних действий при вычислениях, чтобы не было лишних ошибок. Например, здесь в стоящее выше выражение нужно было подставить R 3 , поэтому совершенно бессмысленно было находить R через кубический корень, а затем снова возводить выражение в 3-ю степень. Что и показано в примере.
Но если быть еще внимательнее, то сравнивая преобразованную формулу для Vкон. (вторая строка формул) и следующую за ней формулу для Vшара, можно обнаружить, что эти объёмы отличаются в 4 раза. Тогда вычисления укладываются вообще в одно действие — 28/4 = 7.

Теперь проверьте себя.

Задача 1

Конус вписан в шар. Радиус основания конуса равен радиусу шара. Объём конуса равен 6. Найдите объём шара.

Задача обратная к приведенной в Примере 2.
Проводим те же рассуждения, строим те же чертежи и используем те же формулы.

r (радиус конуса) = R (радиус шара) по условию задачи.
h (высота конуса) = R (радиус шара) из чертежа сечения.

Vкон. = 1 _ 3 πr 2 ·h = 1 _ 3 πR 2 ·R = 1 _ 3 πR 3 .

Сравним полученное выражение с формулой объёма шара

Они отличаются только коэффициентом 4, т.е. объем шара в 4 раза больше объёма конуса. Таким образом,

Ответ: 24

Задача 2

Куб вписан в шар радиуса √3 _ . Найдите объем куба.

Куб вписан в шар — куб внутри, сфера снаружи. Все вершины куба лежат на поверхности шара. Т.е. куб имеет со сферой 8 общих точек.
У куба есть центр симметрии — точка пересечения диагоналей. Центр принадлежит 9-ти плоскостям симметрии куба, которые проходят через пары противоположных ребер либо через середины противоположных ребер.
Центр шара и центр симметрии вписанного куба совпадают.
Поэтому для успешного решения подобных задач нужно просто выбрать одно из сечений плоскостью симметрии куба — то, в котором больше известных величин.

Строим одно из диагональных сечений куба, например, BB1D1D. Оно является плоскостью симметрии куба. Точка O — центр куба и шара — принадлежит этой плоскости. Сечением шара будет его большой круг.

Дальше задача решается, как в планиметрии. На плоском чертеже подписываем известные из условия значения величин и те, которые определили сами.
Чтобы найти объём куба, нужно знать длину его ребра. Обозначим её за x.
Отрезок B1D1 является диагональю верхней грани куба, т.е. квадрата A1B1C1D1, поэтому его длина √2 _ ·x. (Это можно помнить как формулу из учебника или определить по теореме Пифагора из треугольника A1B1D1.)
Отрезки OB и OD1 являются радиусами большой окружности, поэтому их длины равны √3 _ по условию задачи.
Треугольник BB1D1 — прямоугольный, т.к. является сечением куба плоскостью, перпендикулярной его основанию. Поэтому применим к треугольнику BB1D1 теорему Пифагора.
BD1 2 = BB1 2 + B1D1 2
( √3 _ + √3 _ ) 2 = x 2 + ( √2 _ ·x) 2

Преобразуем уравнение и решаем его относительно x.
(2· √3 _ ) 2 = x 2 + ( √2 _ ·x) 2 ;
4·3 = x 2 + 2·x 2 ;
12 = 3x 2 ;
x 2 = 4; x = 2.

Вычисляем объём куба V = x 3 = 2 3 = 8.

Ответ: 8

Как я уже упоминала, в банке заданий ФИПИ задачи по стереометрии ЕГЭ 2018 распределены на две части -задания 8 и 14. На мой взгляд, независимо от уровня трудности задачи к стереометрии надо готовиться не по номеру задания, а по типам фигур. Следующие задачи формально относятся к заданию 8. Но поскольку они продолжают тему шара, то помещены в этом разделе сайта.
Если вы попали по ссылке непосредственно в это место страницы, чтобы повторить нужные формулы и понятия для сферы и шара, прокрутите страницу вверх .

Задача 3

Куб описан около сферы радиуса 6,5. Найдите объём куба.

Объём куба V = a 3 , где a — длина его ребра.

Если Вы внимательно читали решение примера 1, то уже поняли, что ребро куба равно удвоенному радиусу, т.е. диаметру, описанной сферы.

a = 2·R = 2·6,5 = 13;
V = 13 3 = 13 2 ·13 = 169·13 = 2197.

Ответ: 2197

Задача 4

Площадь большого круга шара равна 3. Найдите площадь поверхности шара.

Пусть R — радиус шара. Площадь его поверхности определяется по формуле

Большой круг — сечение, которому принадлежит центр шара, поэтому радиус круга равен радиусу шара. Площадь круга определяется по формуле

Сравнивая эти два выражения, видим, что площадь поверхности шара в 4 раза больше площади круга, следовательно

Ответ: 12

Задача 5

Дано два шара. Радиус первого шара в 2 раза больше радиуса второго. Во сколько раз площадь поверхности первого шара больше площади поверхности второго?

Пусть R — радиус второго шара. Площадь его поверхности S2 = 4πR 2 .

Тогда 2·R — радиус первого шара и S1 = 4π(2·R) 2 = 4π·4·R 2 — площадь его поверхности.

Чтобы ответить на вопрос задачи, составим отношение площадей

(Дробь сократилась на 4π и на R 2 .)

Замечания
1) Не торопитесь перемножать числа в дробных выражениях промежуточных вычислений. Может оказаться, что на следующем шаге дробь легче сократить.
2) Вообще говоря, это известный факт, в том числе и для школьной программы, что площади подобных фигур относятся как квадраты их линейных размеров . Поэтому, если радиусы шаров различаются в 2 раза, то площади поверхностей будут различаться в 2 2 = 4 раза. Задача решается в одно действие. Разумеется теми учениками, которые хорошо знают тему "Подобие фигур". Рекомендую повторить и следующую задачу решить этим способом.

Ответ: 4

Задача 6

Объем одного шара в 27 раз больше объема второго. Во сколько раз площадь поверхности первого шара больше площади поверхности второго?

Известно, что площади подобных фигур относятся как квадраты их линейных размеров, а их объёмы относятся как кубы линейных размеров.
Все шары являются подобными фигурами и имеют характерный линейный размер — радиус.
Если объем одного шара в 27 раз больше объема второго, то радиус первого шара в 3 раза больше радиуса второго (27 = 3 3 ).
Тогда площадь поверхности первого шара в 9 раз больше площади поверхности второго (3 2 = 9).

Замечание: Если вы плохо помните тему "Подобие фигур", то задачу можно решить с использованием формул для площади поверхности и объёма шара, как это было показано в решении задачи 5.

Ответ: 9

Задача 7

Шар вписан в цилиндр. Площадь поверхности цилиндра равна 18. Найдите площадь поверхности шара.

Площадь полной поверхности цилиндра Sцил. = 2πrh + 2πr 2 , где r — радиус основания цилиндра, h — его высота.
Площадь поверхности шара Sшара = 4πR 2 , где R — радиус шара.

Строим сечение шара плоскостью, проходящей через ось симметрии цилиндра. В сечении получаем прямоугольник и вписанный в него большой круг шара. На плоском чертеже сечения обозначаем
R — радиус шара, это например, отрезки OO1, OO2, OE, соединяющие центр шара с общими точками цилиндра и поверхности шара;
r — радиус основания цилиндра, например, отрезок O1C;
h — высота цилиндра O1O2.

Пользуясь симметрией шара и прямого кругового цилиндра легко доказать, что все упомянутые отрезки — стороны прямоугольников. Поэтому r = R, h = 2R. Подставим эти величины в формулу площади полной поверхности цилиндра и произведем преобразования для упрощения выражения:

Сравниваем с формулой поверхности шара: Sшара : Sцил. = 4πR 2 :R 2 = 2:3.
Таким образом, площадь шара составляет две третьих площади цилиндра: Sшара = 18·2/3 = 12.

Замечание: Если забыты формулы для цилиндра, их можно повторить, перейдя по ссылке.

Ответ: 12

Вернуться к списку заданий первой части профильного уровня ЕГЭ 2018.

Главная > Учебные материалы > Математика: Стереометрия. Страница 6

1 2 3 4 5 6 7 8

Отправить ответ

  Подписаться  
Уведомление о
Adblock
detector