Карбид вольфрама твердость по роквеллу

Гранулированный карбид вольфрама при нормальных условиях представляет собой серый порошок с металлическим блеском, нерастворимый в воде.
Плотность порядка 15,8 г/см³;
температура плавления — 2870 °C [2] ;
твёрдость по Роквеллу от 87 до 92 единиц;
модуль упругости 450÷650 ГПа [3] ;
тепловой эффект-8,4+/-0,2 ккал/моль;
стандартная энтропия-8,5+/-1,5 кал/(моль*град);
энтропия образования из элементов- -0,31 кал/(моль*град);
теплоемкость (при температуре 293 К) составляет 8,53 кал/(моль*град);
теплопроводность (при температуре 25 град.) 0,07 кал/(см*с*град);
коэффициент термического расширения 3,84(3,9)*10 6 град -1 ;
характеристическая температура (температура Дебая) 493 К;
удельное электросопротивление (при Т=20 0 С)19,2+/-0,3 мкОм*см;
удельная электропроводность — 52200 Ом -1 *см -1 ;
коэффициент электросопротивления (при Т=20-1500 0 С) +0,495*10 -3 град -1 ;
коэффициент т.э.д.с. составляет -23,3 мкВ/град; работа выхода 3,6 эВ;
постоянная Ричардсона 2,7 А/(см 2 *град 2 );
постоянная Холла -21,8+/-0,3 см 3 /к*10 4 ;
коэффициент электронной теплоемкости 0,79 мДж/(моль*град 2 ).

Структура

Известны две формы WC, гексагональная, α-WC, и кубическая, высокотемпературная форма, β-WC.

Применение

Карбид вольфрама активно применяется в технике для изготовления инструментов, требующих высокой твёрдости и коррозионной стойкости, а также для износостойкой наплавки деталей, работающих в условиях интенсивного абразивного изнашивания с умеренными ударными нагрузками. Этот материал находит применение в изготовлении различных резцов, абразивных дисков, свёрл, фрез, долот для бурения и другого режущего инструмента. Твёрдый сплав, известный как «победит», «рэлит», на 90 % состоит из карбида вольфрама.

Активно применяется в газотермическом напылении и наплавке в виде порошкового материала для создания износостойких покрытий. Один из основных материалов, использующихся для замены гальванического хромирования методом высокоскоростного газопламенного напыления.

Особо следует выделить использование карбида вольфрама для изготовления сердечников бронебойных пуль и снарядов. Сейчас этот материал является доминирующим в данном применении, однако в последнее время в ряде стран он вытесняется обеднённым ураном.

Применяется при производстве сверхпрочных шариков для шариковых ручек размером 1 мм. Полировка этих шариков проводится в специальной машине на протяжении нескольких дней с использованием малого количества алмазной пасты.

Применяется для изготовления браслетов для дорогих швейцарских часов. Также карбид вольфрама приобрёл большую популярность при изготовлении ювелирных изделий — колец, кулонов — в которых его износостойкость позволяет гарантировать «вечный» блеск изделий.

Карбид вольфрама используется в виде подложки для платинового катализатора [4] .

Также используется при изготовлении торцевых уплотнений валов механизмов (например в насосах) в случаях, когда контактирующая среда имеет высокую абразивность и/или вязкость.

Токсичность

Карбид вольфрама химически инертен, поэтому изделия из него не представляют опасности для человека при нормальных условиях. Летальная доза карбида вольфрама для человека не определена.

Исследования, проведённые Дрезденским техническим университетом, Лейпцигским центром им. Гельмгольца по проблемам окружающей среды и Фраунгоферовским институтом керамических технологий и систем показали, что нанопыль карбида вольфрама может проникать в клетки живых организмов. При этом собственно частицы вольфрама нетоксичны, однако при соединении с кобальтом в определённых концентрациях, они могут представлять опасность для здоровья клеток [5] . При долговременном регулярном поступлении пыли карбида вольфрама и кобальта в организм может возникать фиброз [6] .

Нож, как одно из первых орудий труда человека, пережил каменный и бронзовый века и прочно закрепился в железном. Со времен первых стальных ножей многое изменилось, но принцип реза остался прежний.

Карбид вольфрама очень износостойкий, но лезвия ножей из него не изготавливают. Его напыляют на режущие кромки, используют в точильных инструментах.

Нож — это полоса стали с клиновидным сечением, заостренным кончиком с одной стороны и рукоятью с другой. Но в наши дни ножи можно делать не только из стали. Давайте посмотрим, из чего и как делают редкие ножи в наши дни.

ДАМАСК
Технология изготовления дамасской стали появилась за несколько веков до нашей эры в нескольких уголках мира независимо друг от друга. Но свое название сталь почему-то получила от города Дамаска, хотя исторически это не совсем оправданно. Дамасская сталь представляет собой смесь нескольких сталей с разным содержанием углерода, в результате чего после травления клинка на нем проступает узор: более темные слои стали (как правило, с большим содержанием углерода) контрастно выделяются на фоне тех, что посветлее. Для получения такого узора кузнец раскаляет в горне несколько пластин сталей разных марок и сковывает их вместе, перекручивает и расплющивает, складывает раскаленную добела заготовку пополам и снова расковывает. Кроме красоты, это имеет и практическую ценность: стали, обладающие отличным резом, зачастую хрупки, а в дамаске они соединены с более вязкими и упругими сталями. Еще более сложным в изготовлении является мозаичный дамаск, при создании которого отдельные кусочки или разные виды дамаска соединяются между собой методом горновой сварки. Опытные кузнецы умудряются таким способом создавать на лезвиях ножей целые картины.

Чтобы получить мозаичный дамаск, кузнец режет на «осколки» уже готовый пакет дамасской стали, собирает из них новую композицию и соединяет кузнечной сваркой в горне.

На любой ножевой выставке-ярмарке найти дамаск несложно. Но как узнать, насколько он хорош? Некоторые мастера позволяют построгать сухую деревяшку тестовым образцом, чтобы покупатель понял, как сталь держит заточку. Плохо, когда кузнец не может сказать, на какую твердость закалена сталь, или назвать ее состав. Добросовестный мастер, если использует стали со своим собственным экспериментальным составом, всегда может назвать ближайшие аналоги марок по содержанию углерода и легирующих добавок или даже предоставит небольшой «паспорт» своего изделия. Кузнецы, дорожащие добрым именем, клеймят свои работы во избежание подделок. Если же ничего этого нет, покупатель рискует взять «дамаск» из перекованной рессоры, гвоздей и гаечных ключей, который едва ли будет лучше советского «кухонника».

БУЛАТ
Булат часто путают с дамаском, но хоть они и идут бок о бок, это разные материалы. Если в дамаске смешивается несколько слоев, то булат имеет более-менее однородный состав. Иногда, правда, в нем могут быть декоративные сегменты, которые добавляются методом горновой сварки, но на режущую кромку они не влияют. Если в дамаске или ножах из обычной инструментальной стали используются привычные составы, то в булате кузнец изобретает свой состав и не может его отлить в большой лист, который потом разрежет на пластины нужной формы. Булат содержит большое количество углерода, и, если такую сталь отлить в форму, она «распадется», углерод «всплывет» на поверхность с частью легирующих добавок, а еще часть осядет на дно. Атомы углерода, соединяясь с атомами железа, образуют цементиты — карбиды железа. В итоге после травления уже готового клинка можно увидеть рисунок на его поверхности: места повышенного содержания углерода имеют другой оттенок. Иногда на клинке проявляется рисунок в виде сетки, иногда видны просто волнообразные линии. Это зависит от того, как расковывали заготовку. Кузнецы между собой даже спорят, какой рисунок практичнее и как лучше ковать заготовку, чтобы вывести к режущей кромке побольше цементита. Его твердость в чистом виде — 74 HRC, что на десяток–полтора единиц выше хорошо закаленной «углеродки». Именно высокое содержание цементита добавляет клинку твердость и «резучесть».

Читайте также:  Виды подшипников и их классификация

И при этом клинок зачастую обладает пружинными свойствами.
Чтобы получить такие соединения, кузнецы идут на различные хитрости: чередуют нагрев и медленное охлаждение, меняют температуру нагрева и продолжительность, экспериментируют с количеством углерода в заготовке. А поскольку булат на Руси был известен давно, то большинство кузнецов хранят технологии его изготовления в секрете как родовую тайну. В одних случаях это маркетинг, в других — чистая правда. Кузнецы без каких-либо лабораторий и химических анализов, делая все чуть ли не на глаз, по дедушкиному рецепту, получают клинки с твердостью после закалки в 62–64 HRC. Если кузнец действительно талантлив, он никогда не упустит возможности продемонстрировать, на что способно его творение, и измерит твердость клинка при свидетелях.


ТИТАН

Этот ракетный металл, грубо говоря, вдвое легче стали и вдвое тяжелее алюминия, широко используемого в авиации. Абсолютно устойчив к коррозии, хотя на воздухе окисляется и приобретает красивый серый оттенок. Оксид титана защищает поверхность ножа от износа и царапин, подобно какому-либо напылению. Из-за своей устойчивости к повреждениям используется в бронепластинах. Не магнитится, благодаря чему инструменты из него используются саперами. Безусловно, титановые ножи довольно редки и обладают рядом интересных качеств. Но как они режут?

Твердомер Роквелла можно увидеть на оружейных выставках: он позволяет оценить твердость стали по специальной шкале.

Титан для ножей калят до твердости примерно 40–47 HRC, в то время как инструментальные стали закаливаются до 58 HRC. Кроме того, титан очень вязкий металл, и затачивать его проблематично: за точильным камнем постоянно тянется заусенец, из-за которого трудно получить идеально острую режущую кромку (если это и удастся, держаться она будет недолго). Тем не менее из титана делают дайверские ножи. Небольшой вес, устойчивость к поперечным нагрузкам (титановую пластину с большим трудом можно согнуть, но вряд ли она лопнет), антикоррозионные свойства во всем подходят дайверам. При минусовой температуре у титана меньше шансов лопнуть, чем у стали. А при максимальной ножами из титана можно переворачивать дрова в костре, не боясь нарушить закалку. Но режут они все-таки не ахти.

Впрочем, есть один способ заставить титан резать. В США некоторые мастера используют для этого различного рода карбиды, которыми покрывают клинок ножа полоской в несколько миллиметров по всей длине режущей кромки. Точится клинок (а скорее, неспешно правится) лишь с одной стороны. На выходе получается дорогое изделие, рез которого обладает некой шероховатостью и «сухостью». Под микроскопом режущая кромка такого ножа очень напоминает микропилу. По похожему принципу ножи из титана делали и в России.
—Наши мастера в отличие от заокеанских коллег не просто карбидизировали поверхность ножа, а использовали так называемое «глубокое внедрение» их в слой титана, — поделился Алексей Кукин, основатель столичной «Ножевой мастерской». — В итоге карбиды проникали в слой титана на глубину 0,5 мм. Эту сложную процедуру проделывали в лаборатории при институте имени Бочвара. Спуски у ножа были симметричными, двухсторонними. Естественно, были и проблемы с правильной заточкой ножа с заусенцем на кромке. И хоть слой карбидов в 0,5 мм — это большой показатель для титановых ножей, он все же рассчитан на небольшое количество затачиваний. А создание одного такого ножа обходилось в массу времени, усилий и денежных средств. В итоге это был лишь небольшой побочный эксперимент, и вскоре мы полностью вернулись к традиционным материалам.

КЕРАМИКА
Керамические ножи можно встретить сейчас в любом супермаркете или интернет-магазине, чаще всего это кухонные ножи. Заточку они держат средненько, на излом хрупкие, кости рубить ими нельзя — кромка тут же выкрошится. Но из керамики можно делать и хорошие ножи. Так, американский мастер Кевин МакКланг добился потрясающих результатов в изучении керамики. Долгое время он работал старшим материаловедом в American Rocket Company. Позже он основал свою компанию Mad Dog knives (по одной из легенд это произошло после укуса бешеной собаки). ВМС США для спецотрядов закупали ножи Мэд Дог, и в какой-то момент МакКланг предложил военным свой новый продукт — ножи из керамики, которые обладали твердостью около 60 HRC, точились стандартными камнями для заточки, обладали прочностью и даже минимальной гибкостью, чуть уступая пружинной стали, не боялись коррозии, низкой или высокой температуры, химических реагентов, а главное, металлодетекторов. Кроме того, эти ножи не магнитились и были абсолютным диэлектриком. Они неплохо держали заточку, ими можно было рубить древесину, резать, наносить колющие удары. МакКланг посчитал, что такие ножи пригодятся саперам или каким-либо спецотрядам для скрытного ношения. Над таким керамическим композитом он работал без малого семь лет и держал в тайне его состав и способ изготовления. Ему удалось добиться того, что керамика почти не крошилась и лезвие давало сколы лишь при критических нагрузках. По некоторым данным, военные заказали у него несколько монтировок из такого материала и протестировали их с крайней жестокостью: разбивали ими кирпичи, забивали их молотком в дерево, бросали с большой высоты. Монтировки все выдержали, но военные все же не решились закупать их массово — слишком дорого. В результате несколько небольших партий ножей МакКланг продал военным, а еще несколько пустил «гулять» по миру, выставив их на условно-свободную продажу. Купить их по-прежнему могли только представители правоохранительных органов или вооруженных сил при предоставлении удостоверения. Но после такой покупки нож принадлежал покупателю, а не армии. В конце концов МакКевин перестал заниматься керамическими ножами и полностью вернулся к традиционным материалам.

Читайте также:  Фиксированное начало отсчета имеет шкала

Ножи Уоррена Томаса сделаны из титана и стекловолокна. Ни один даже самый мелкий винт он не делает из стали.

КАРБИД ВОЛЬФРАМА
Карбид вольфрама — один из самых твердых видов керамики, до 90 HRC (даже легендарную японскую высокоуглеродистую сталь ZDP-189 после многоступенчатой термообработки закаливают до твердости около 67 HRC, а твердость алмаза — 100 HRC). Этот материал проявляет недюжинную износостойкость, имеет крайне высокую температуру плавления, мало подвержен окислению. Из него делают бронебойные снаряды и сердечники бронебойных пуль, режущие инструменты для металлообработки, ювелирные украшения или покрытия для дорогих часов (их сложно поцарапать и со временем они не теряют вида недавно купленных часов). Но в чистом виде для изготовления ножей он не используется. Его добавляют в виде порошка во время перековки заготовки. О том, как создаются ножи с повышенным содержанием карбида вольфрама, мы попросили рассказать Владислава Матвеева, потомственного кузнеца.

ЗАКАЛИТЬ ХОЛОДОМ? Помимо материала, состава сплавов, геометрии клинка, большое значение имеет и закалка. Современные методы ушли далеко вперед по сравнению с нагревом в печи и охлаждением в масле. Мастера чередуют нагрев с замораживанием стали, совершают это в аргонной среде, делают зонную закалку. И таких чередований может быть до десяти; но если не знать свойств и состава дамаска, его можно испортить — ведь в нем смешаны разные стали, и методы термообработки у них различны.

— Карбид вольфрама в том виде, который я использую, — это серый порошок, по размеру частиц сопоставимый с обычной мукой, — пояснил Владислав. — Лучше всего для работы с карбидом подходит пружинная сталь, такая как 65Г или 60С2. Она перековывается в кузнице до получения 1500, а то и 3000 слоев. Но в отличие от создания дамаска или просто слоеной стали, заготовку при перековках «на себя» нужно покрывать слоем этого порошка. Тщательно перековав, я процедуру повторяю до тех пор, пока карбид не будет распределен равномерно в металле. Этот материал правильнее будет называть композитом, ведь в нем и карбид, и сталь выполняют определенную роль. Карбид сам по себе дает хрупкость и в чистом виде мало подходит на роль материала для ножа. А в сочетании с пружинной сталью и правильной термообработкой мы получаем довольно гибкий клинок, который при этом неплохо режет.

Самозата­чива­ющийся титановый нож с односторонним напылением карбида вольфрама на режущую кромку.

Механизм реза у таких ножей схож с резом титановых, которые описаны выше. Но есть и различия. Из несущественных — клинок подвержен коррозии, тяжелее титанового, магнитится. Из весомых — его можно точить хоть до самого обуха, но и заточка занимает больше времени по сравнению с обычным ножом. С этими материалами работает мало мастеров, и порой за их изделиями выстраивается очередь.

Представлены сведения о химических и физических свойствах карбидов металлов: таких, как гафний, хром, титан, вольфрам и других. Физические свойства карбидов сведены в отдельные таблицы, в которых указана их плотность, твердость, температура плавления и кипения, а также электрические и тепловые свойства.

Карбид гафния GfC

В таблице приведены свойства карбида металла гафния. Карбид гафния представляет собой соединение серого цвета с температурой плавления 3890°С и высокой плотностью, которая при комнатной температуре составляет 12600 кг/м 3 . Энергия кристаллической решетки GfC равна 117,2·10 5 кДж/кмоль.

Карбид гафния полностью растворяется в ортофосфорной, азотной и серной кислотах. При температуре около 2000°С он начинает взаимодействовать с тугоплавкими металлами — такими, как молибден, вольфрам, тантал и ниобий.

Физические свойства карбида гафния GfC

Молекулярная масса 190,5
Тип решетки Кубическая
Плотность, кг/м 3 12600
Температура плавления, °С 3890±150
Температура кипения, °С 4160
Средний ТКЛР в интервале 20-1200°С, α·10 6 , град -1 6,1
Молярная теплоемкость при 20°С, кДж/(кмоль·град) 35,3

Теплопроводность карбида гафния с нулевой пористостью при температуре 300°С равна 9,2 Вт/(м·град). При нагревании коэффициент теплопроводности GfC увеличивается. Удельная теплоемкость карбида гафния относительно невысока и при росте температуры слабо увеличивается.

Удельная теплоемкость и теплопроводность карбида гафния при температуре от 300 до 1200°С

300 400 600 800 1000 1200
Удельная массовая теплоемкость, Дж/(кг·град) 251 251 255 268 281 297
Коэффициент теплопроводности, Вт/(м·град) 9,2 10 11,7 13,8 15,9 17,2

Карбиды хрома

Таблица содержит физические свойства карбидов хрома различного состава. Соединения с формулой Cr23C6 и Cr3C2 имеют серый цвет; Cr7C3 — серебристый.

Карбиды хрома Cr23C6 и Cr7C3 нерастворимы в царской водке. После длительного нагрева при 730…870°С карбид Cr7C3 превращается в Cr23C6. Карбид Cr3C2 нерастворим в воде. Изделия из него также практически нерастворимы в кислотах, их смесях и растворах щелочей. Однако, он может взаимодействовать с цинком при температуре 940°С. Температура начала окисления Cr3C2 составляет 900…1000°С.

Физические свойства карбидов хрома Cr4C, Cr23C6, Cr7C3, Cr3C2

Свойства/карбид Cr4C Cr23C6 Cr7C3 Cr3C2
Молекулярная масса 220 1265 400 180
Тип решетки Кубическая Кубическая Гексагональная Ромбическая
Плотность, кг/м 3 6970 6920 6680
Температура плавления, °С 1520 1550 1700±50 1890 (разлаг.)
Средний ТКЛР в интервале 20-800°С, α·10 6 , град -1 10,1 10 10,3
Удельная массовая теплоемкость при 20°С, Дж/(кг·град) 493 523 546
Молярная теплоемкость при 20°С, кДж/(кмоль·град) 84 209 98
Коэффициент теплопроводности при 20°С, Вт/(м·град) 18,7 16,6 16,2
Читайте также:  Приспособа для развальцовки трубок

Карбид титана TiC

Карбид титана TiC представляет собой соединение светло-серого цвета с металлическим блеском. Он химически инертен при комнатной температуре: плохо растворяется в кислотах, их смесях и некоторых щелочах в холодном и нагретом состояниях.

При высоких температурах (выше 2500°С) начинает реагировать с азотом. При взаимодействии с водородом обезуглероживается. Кроме того, окисляется углекислым газом при температурах выше 1200°С. Температура активного окисления карбида титана составляет 1100…1200°С.

Область температурной устойчивости TiC достигает 3140°С, он высокостоек в расплавленных легкоплавких металлах и металлах типа меди, алюминия, латунях, чугунах и сталях. Степень черноты карбида титана равна 0,9 (при длине волны 0,655 мкм).

Физические свойства карбида титана TiC

Молекулярная масса 59,9
Тип решетки Кубическая
Плотность, кг/м 3 4930
Температура плавления, °С 3147±50
Температура кипения, °С 4305
Твердость по шкале Мооса 8-9
Средний ТКЛР в интервале 20-2700°С, α·10 6 , град -1 9,6
Молярная теплоемкость при 20°С, кДж/(кмоль·град) 33,7
Удельная массовая теплоемкость при 25°С, Дж/(кг·град) 842
Коэффициент теплопроводности при 20°С, Вт/(м·град) 34…39
Удельное электрическое сопротивление при 20°С, ρ·10 8 , Ом·м 60

Карбиды вольфрама W2C и WC

Карбиды вольфрама W2C и WC представляют собой соединения серого цвета. Область температурной устойчивости для W2C составляет до 2750°С; для WC — до 2600°С. Тонкий порошок WC быстро окисляется на воздухе при 500…520°С. Температура начала окисления грубого порошка WC составляет 595°С. При 700°С изменение массы карбида вольфрама WC в результате часового окисления составляет 8,3 мг/(см 2 ·ч).

При комнатной температуре порошок карбида вольфрама практически не растворяется в сильных концентрированных кислотах. Однако он почти полностью растворим в кипящих H2SO4 и HNO3. При температуре 940°С WC слабо взаимодействует с расплавом цинка.

Физические свойства карбидов вольфрама W2C, WC

Свойства/карбид W2C WC
Молекулярная масса 379,7 195,9
Тип решетки Гексагональная
Плотность, кг/м 3 1720 1560
Температура плавления, °С 2730±15 2720
Температура кипения, °С 6000
Твердость по шкале Мооса 9-10 9
Средний ТКЛР в интервале 20-2000°С, α·10 6 , град -1 5,8
Удельная массовая теплоемкость в интервале 0-100°С, Дж/(кг·град) 184
Молярная теплоемкость при 25°С, кДж/(кмоль·град) 36
Коэффициент теплопроводности при 20°С, Вт/(м·град) 29,3 197

Карбид кальция CaC2

В таблице приведены физические свойства карбида кальция CaC2. По своим оптическим свойствам химически чистый карбид кальция — большие, почти бесцветные кристаллы с голубоватым оттенком. Технический CaC2 в зависимости от степени чистоты имеет серый, коричнево-желтый или черный цвет.

Предел температурной устойчивости для карбида кальция равен 2300°С. При температуре 20°С он полностью растворяется в воде (с выделением ацетилена) и концентрированной соляной кислоте.

Физические свойства карбида кальция CaC2

Молекулярная масса 64,1
Тип решетки Тетрагональная, кубическая
Плотность, кг/м 3 2100
Температура плавления, °С 2300 (разлаг.)
Удельная массовая теплоемкость при 25°С, Дж/(кг·град) 960
Молярная теплоемкость при 25°С, кДж/(кмоль·град) 61,3

Карбид циркония ZrC

Карбид циркония представляет собой соединение серого цвета с металлическим блеском. Он химически инертен при комнатной температуре: плохо растворяется в концентрированных кислотах, их смесях и некоторых щелочах, как в холодном, так и нагретом состоянии. Карбид циркония нерастворим в воде, однако взаимодействует с азотом с образованием нитридов.

Температура активного окисления ZrC составляет 1100…1200°С, область температурной устойчивости — до 3530°С. Карбид циркония стоек в расплавах меди и медных сплавов, стали, чугуна и легкоплавких металлов.

Физические свойства карбида циркония ZrC

Молекулярная масса 103,2
Тип решетки Кубическая
Плотность, кг/м 3 6730
Температура плавления, °С 3530
Температура кипения, °С 5100
Твердость по шкале Мооса 8-9
Средний ТКЛР в интервале 20-1100°С, α·10 6 , град -1 6,74
Молярная теплоемкость при 20°С, кДж/(кмоль·град) 61,1
Удельная массовая теплоемкость при 25°С, Дж/(кг·град) 456
Коэффициент теплопроводности при 0°С, Вт/(м·град) 42
Удельное электрическое сопротивление при 20°С, ρ·10 8 , Ом·м 50

Карбиды ниобия Nb2C и NbC

В таблице даны физические свойства карбидов ниобия Nb2C и NbC. Плотный карбид ниобия NbC имеет серовато-коричневый или бледно-лиловый металлический цвет. Порошок NbC имеет фиолетовый оттенок.

Карбиды ниобия при комнатной температуре химически инертны, обладают высокой химической стойкостью к действию кислот и их смесей даже в нагретом состоянии. Однако, они растворимы в смеси плавиковой и азотной кислоты.

При нагревании на воздухе NbC слегка обезуглероживается. До температуры 2500°С он устойчив в атмосфере азота. Температура активного окисления карбида ниобия составляет 900…1000°С. Область температурной устойчивости — до 3890°С. Он стоек в расплавах металлов (Cu, Al), имеет высокую твердость по шкале Мооса.

Физические свойства карбидов ниобия Nb2C и NbC

Свойства/карбид Nb2C NbC
Молекулярная масса 197,8 105
Тип решетки Гексагональная Кубическая
Плотность, кг/м 3 7860 7560
Температура плавления, °С 2927 3480
Температура кипения, °С 4500
Твердость по шкале Мооса 9-10
Средний ТКЛР в интервале 20-1100°С, α·10 6 , град -1 6,5
Удельная массовая теплоемкость при 20°С, Дж/(кг·град) 315 355
Молярная теплоемкость при 25°С, кДж/(кмоль·град) 30,36 37,35
Коэффициент теплопроводности при 20°С, Вт/(м·град) 19
Удельное электрическое сопротивление при 20°С, ρ·10 8 , Ом·м 55 46
  1. Чиркин В. С. Теплофизические свойства материалов ядерной техники. М.: Атомиздат, 1967. — 474 с.
  2. Кржижановский Р. Е., Штерн З. Ю. Теплофизические свойства неметаллических материалов (карбиды). Справочник. Л.: Энергия, 1976. — 120 с.

Отправить ответ

  Подписаться  
Уведомление о
Adblock
detector