Магнитный вид неразрушающего контроля

Неразруша́ющий контро́ль (НК) — контроль надёжности основных рабочих свойств и параметров объекта или отдельных его элементов/узлов, не требующий выведения объекта из работы либо его демонтажа.

Также существует понятие разрушающего контроля (например, краш-тесты автомобилей).

Содержание

Основные методы [ править | править код ]

Основными методами неразрушающего контроля являются [1] [2] :

  • магнитный — основанный на анализе взаимодействия магнитного поля с контролируемым объектом. Применяется для выявления дефектов в ферромагнитных металлах (никель, железо, кобальт и ряд сплавов на их основе);
  • электрический — основанный на регистрации параметров электрического поля, взаимодействующего с контролируемым объектом или возникающего в контролируемом объекте в результате внешнего воздействия;

  • вихретоковый — основанный на анализе взаимодействия электромагнитного поля вихретокового преобразователя с электромагнитным полем вихревых токов, наводимых в контролируемом объекте;
  • радиоволновой — основанный на регистрации изменений параметров электромагнитных волн радиодиапазона, взаимодействующих с контролируемым объектом;
  • тепловой — основанный на регистрации изменений тепловых или температурных полей контролируемых объектов, вызванных дефектами. Основной параметр в тепловом методе — это распределение температуры по поверхности объекта, так как несет информацию об особенностях процесса теплопередачи, его внутренней структуре, наличии скрытых внутренних дефектов и режиме работы объекта;
  • оптический — основанный на регистрации параметров оптического излучения, взаимодействующего с контролируемым объектом;
  • радиационный — основанный на регистрации и анализе проникающего ионизирующего излучения после взаимодействия с контролируемым объектом. Слово «радиационный» может заменяться словом, обозначающим конкретный вид ионизирующего излучения, например, рентгеновский, нейтронный и т. д.;

  • акустический(ультразвуковой) — основанный на регистрации параметров упругих волн, возбуждаемых или возникающих в контролируемом объекте. При использовании упругих волн ультразвукового диапазона (выше 20 кГц) допустимо применение термина «ультразвуковой» вместо термина «акустический»;
  • проникающими веществами — основанный на проникновении веществ в полости дефектов контролируемого объекта. Термин «проникающими веществами» может изменяться на «капиллярный», а при выявлении сквозных дефектов — на «течеискание»;
  • виброакустический — основанный на регистрации параметров виброакустического сигнала, возникающего при работе контролируемого объекта.
  • визуальный(ВИК) — выявление заусенцев, вмятин, ржавчины, прожогов, наплывов, и других видимых дефектов.

Классификация контроля [ править | править код ]

Коэрцитивной силы, Намагниченности, Остаточной индукции, Магнитной проницаемости, Напряженности Эффекта Баркгаузена

Индукционный, Феррозондовый, Магнитографический, Пондеромоторный, Магниторезисторный

Электрический, Трибоэлектрический, Термоэлектрический,

Электростатический порошковый, Электропараметрический, Электроискровой, Рекомбинационного излучения, Экзоэлектронной эмиссии, Шумовой, Контактной разности потенциалов

Прошедшего излучения, Отраженного излучения

Амплитудный, Фазовый, Частотный, Спектральный, Многочастотный

Прошедшего излучения, Отраженного излучения, Рассеянного излучения, Резонансный

Амплитудный, Фазовый, Частотный, Временной, Поляризационный, Геометрический

Детекторный (диодный), Болометрический, Термисторный, Интерференционный, Голографический, Жидких кристаллов, Термобумаг, Термолюминофоров, Фотоуправляемых полупроводниковых пластин, Калориметрический

Тепловой контактный, Конвективный, Собственного излучения,

Пирометрический, Жидких кристаллов, Термокрасок, Термобумаг, Термолюминофоров, Термозависимых параметров, Оптический, Интерференционный, Калориметрический

Прошедшего излучения, Отраженного излучения, Рассеянного излучения, Индуцированного излучения

Амплитудный, Фазовый, Частотный, Временной, Поляризационный, Геометрический, Спектральный

Интерференционный, Нефелометрический, Голографический, Рефрактометрический, Рефлексометрический, Визуально-оптический,

Прошедшего излучения, Рассеянного излучения, Активационного анализа, Характеристического излучения, Автоэмиссионный

Плотности потока энергии, Спектральный

Сцинтилляционный, Ионизационный, Вторичных электронов, Радиографический, Радиоскопический

Прошедшего излучения, Отраженного излучения (эхо-метод), Резонансный, Импедансный, Свободных колебаний, Акустико-эмиссионный

Амплитудный, Фазовый, Временной, Частотный, Спектральный

Пьезоэлектрический, Электромагнитно-акустический, Микрофонный, Порошковый

Яркостный (ахроматический), Цветной (хроматический), Люминесцентный, Люминесцентно-цветной, Фильтрующихся частиц, Масс-спектрометрический, Пузырьковый, Манометрический, Галогенный

Вид контроля По характеру взаимодействия физических полей с контролируемым объектом По первичному информативному параметру По способу получения первичной информации
Магнитный Магнитный
Электрический
Вихретоковый
Радиоволновой
Тепловой
Оптический
Радиационный
Акустический
Проникающими веществами Молекулярный
Виброакустический Механические колебания — движение точки или механической системы, при котором происходят колебания характеризующих его скалярных величин Статистические параметры колебательного процесса (механических колебаний) Пьезоэлектрический. Электромагнитно-акустический
Читайте также:  Для чего узо в электроцепи

Неразрушающий контроль (англ. Nondestructive testing (NDT) ) также называется оценкой надёжности неразрушающими методами (англ. nondestructive evaluation (NDE) ) или проверкой без разрушения изделия (англ. nondestructive inspection (NDI) ). НК особенно важен при создании и эксплуатации жизненно важных изделий, компонентов и конструкций. Для выявления различных изъянов, таких как разъедание, ржавление, растрескивание.

В международной практике приняты сокращенные обозначения видов неразрушающего контроля (AWS), приведенные в таблице:

№ п/п Вид контроля Условное обозначение
1 Контроль с применением акустической эмиссии AET
2 Электромагнитный контроль ET
3 Контроль течеисканием LT
4 Магнитопорошковый контроль MT
5 Нейтронная дефектоскопия NRT
6 Контроль с применением проникающей жидкости PT
7 Радиографический контроль RT
8 Ультразвуковой контроль UT
9 Визуальный контроль VT
10 Виброакустический VA

Указанные условные обозначения обозначаются на чертежах.

НК в промышленности [ править | править код ]

Целью использования неразрушающего контроля в промышленности является надёжное выявление опасных дефектов. Поэтому выбор конкретных методов НК определяется эффективностью обнаружения такого брака. На практике наибольшее распространение получил ультразвуковой контроль, как обладающий высокой чувствительностью, мобильностью и экологичностью, а также радиационный, успешно выявляющий опасные дефекты и объективно фиксирующий полученные результаты [3] .

В зависимости от ставящихся задач, используют и другие методы контроля. Например, для поиска поверхностных дефектов — капиллярные, а для выявления сквозных — течеискание.

Электрические, магнитоэлектрические, магнитные и вихревые методы позволяют проводить контроль свойств проводящих сред, как правило, на поверхности и в подповерхностном слое. Более полным образом неразрушающий контроль осуществляется совокупностью нескольких методов [3] .

Магнитный вид неразрушающего контроля применяют в основном для контроля изделий из ферромагнитных материалов, т.е. из материалов, которые способны существенно изменять свои магнитные характеристики под воздействием внешнего (намагничивающего) магнитного поля. Операция намагничивания (помещения изделия в магнитное поле) при этом виде контроля является обязательной. Съем информации может быть осуществлен с полного сечения образца (изделия) либо с его поверхности.

Читайте также:  Пила партнер 350 не заводится

В зависимости от конкретных задач неразрушающего контроля, марки контролируемого материала, требуемой производительности метода могут использоваться те или иные первичные информативные параметры. К числу наиболее распространенных относятся следующие информативные параметры: коэрцитивная сила, намагниченность, индукция (остаточная индукция), магнитная проницаемость, напряженность, эффект Баркгаузена.

По способу получения первичной информации различают следующие методы магнитного вида контроля: магнитопорошковый (МП), магнитографический (МГ), феррозондовый (ФЗ), эффекта Холла (ЭХ), индукционный (И), пондеромоторный (ПМ), магниторезисторный (МР). С их помощью можно осуществить контроль: сплошности (методами дефектоскопии) (МП, МГ, ФЗ, ЭХ, И); размеров (ФЗ, ЭХ, И, ПМ); структуры и механических свойств (ФЗ, ЭХ, И).

Из перечисленных методов только магнитопорошковый требует обязательного участия в контрольных операциях человека; остальные методы позволяют получать первичную информацию в виде электрических сигналов, что делает возможным полную автоматизацию процессов контроля. Методы МП и МГ обнаружения несплошностей являются контактными, т.е. требуют соприкосновения преобразователя (магнитный порошок или магнитная лента) с поверхностью изделия; при остальных методах контроля съем информации осуществляется бесконтактно (хотя и на достаточно близких расстояниях от поверхности).

С помощью магнитных методов могут быть выявлены закалочные и шлифовочные трещины, волосовины, закаты, усталостные трещины и другие поверхностные дефекты шириной раскрытия несколько микрометров. Такие методы, как ФЗ, ЭХ, И, МГ можно использовать на грубых поверхностях, при этом минимальная глубина выявляемых дефектов составляет трехкратную высоту шероховатостей поверхности. В связи с необходимостью сканировать поверхность изделия методы ФЗ, ЭХ особенно удобно применять для контроля цилиндрических изделий. Метод МГ успешно применяют для контроля сварных швов.

Из геометрических параметров с помощью магнитных методов наиболее часто определяют толщину немагнитных покрытий на магнитной основе, толщину стенок изделий из магнитных и немагнитных материалов.

Рекомендованная литература: [7]

Неразрушающим контролем называют контроль качества продукции, который должен не нарушать ее пригодность к использованию по назначению (ГОСТ 16504-81). НК предназначен для выявления дефектов типа нарушения сплошности материала изделия, контроля геометрических параметров, оценки физико-химических свойств материала.

Неразрушающий контроль в зависимости от физических явлений (ГОСТ 18353-79), положенных в его основу, подразделяется на виды, состоящие в свою очередь, из методов, различающихся по характеру взаимодействия физических полей или веществ с контролируемым объектом, информативным первичным параметрам и способам получения первичной информации. Физические методы НК чрезвычайно разнообразны.

В настоящее время система неразрушающего контроля ответственных деталей ЭПС базируется на основе магнитопорошкового, ультразвукового и вихретокового метода контроля.

Методом контроля называют правила применения определенных принципов диагностирования и средств контроля.

Магнитный вид неразрушающего контроля

Рассмотрим некоторые виды магнитного неразрушающего контроля:

а) магнитопорошковый метод неразрушающего контроля — метод неразрушающего контроля, основанный на регистрации магнитных полей рассеяния над дефектами с использованием в качестве индикатора ферромагнитного порошка или магнитной суспензии (на притяжении магнитных частиц силами неоднородных магнитных полей, возникающих над дефектами в намагниченной детали) (рис 2.2).

Читайте также:  Диаметр отверстия под резьбу м10х1

На частицу магнитного порошка вблизи трещины Т действуют: затягивающая сила магнитного поля дефекта Fз, сила тяжести частицы Fт и сила трения Fтр. Значение и направление результирующей силы Fр зависит от расстояния от трещины. На некотором расстоянии от трещины она заставляет частицу перемещаться к дефекту, а вблизи ее — притягивает к поверхности металла.

При магнитопорошковом контроле выявляются поверхностные дефекты типа нарушений сплошности металла: трещины различного происхождения, флокены, закаты, надрывы, волосовины, расслоения, дефекты сварных соединений и др. в деталях, изготовленных из ферромагнитных материалов. На железнодорожном транспорте магнитному контролю подвергаются следующие объекты подвижного состава: детали ударно-тягового и тормозного оборудования, рамы тележек различных моделей в сборе и по элементам, шкворни, оси колесных пар всех типов в сборе и свободном состоянии, диски, гребень и спицы колес, свободные кольца буксовых подшипников, внутренние кольца, напрессованные на шейки оси, венцы зубчатых колес и шестерни тягового редуктора и т.п.

Результаты магнитопорошкового контроля зависят от магнитных свойств материала, формы, размеров и шероховатости поверхности контролируемой детали, местоположения и направления выявляемых дефектов, режима намагничивания, свойств применяемого магнитного индикатора и способа его нанесения. Например: дефектоскопом, представленным на рис. 2.3, выявляются поперечные и наклонные трещины средней части оси колесной пары способом приложенного поля.

Поле рассеяния дефекта максимально, если трещина расположена перпендикулярно силовым линиям магнитного поля. Если угол б между силовыми линиями и трещиной меньше 30 0 (трещина Т2 ) (рис.2.4), то поле дефекта может быть недостаточным для выявления дефекта, а при б менее 10 0 (трещина Т3) — дефекты не выявляются, т.к. поле дефекта равно нулю.

Существенным недостатком магнитопорошкового метода является сложность автоматизации обработки и регистрации результатов контроля;

б) феррозондовый метод неразрушающего контроля — метод неразрушающего контроля, основанный на выявлении феррозондовым

преобразователем магнитного поля рассеяния дефекта в намагниченных изделиях и преобразовании его в электрический сигнал, предназначен для выявления подповерхностных дефектов типа нарушений сплошности: волосовин, плен, трещин, ужимов, закатов, раковин и др.

Выбор феррозондовых преобразователей в качестве индикаторов магнитного поля рассеяния над дефектом в намагниченной детали обусловлен малой потребляемой мощностью, незначительными габаритами, высокой надежностью работы, высоким КПД и избирательностью к локальным магнитным полям рассеяния. Типы дефектоскопов и установок: ДФ-103, ДФ-201, ДУ 101.3, УДП-85П, намагничивающие устройства — МСН-10, МСН12-01 и МНС15, МНС11 и т.д.

Отправить ответ

  Подписаться  
Уведомление о
Adblock
detector