Обмотка низкого напряжения трансформатора

Повышающие и понижающие трансформаторы

До сих пор мы с вами рассматривали трансформаторы, у которых первичная и вторичная обмотки имели одинаковую индуктивность, давая примерно одинаковые уровни напряжения и тока в обоих цепях. Однако, равенство напряжений и токов между первичной и вторичной обмотками трансформатора не является нормой для всех трансформаторов. Если индуктивности двух обмоток имеют разную величину, происходит нечто интересное:

Обратите внимание на то, что вторичное напряжение примерно в десять раз меньше первичного (0,9962 вольт против 10 вольт), а вторичный ток примерно в десять раз превышает первичный (0,9962 мА против 0,09975 мА). В этом SPICE моделировании описано устройство, которое в десять раз понижает напряжение и в десять раз повышает ток.

Трансформатор — это очень полезное устройство. С его помощью мы легко можем повысить или понизить напряжение и ток в цепях переменного тока. Появление трансформаторов сделало практической реальностью передачу электроэнергии на большие расстояния. Трансформаторы позволяют уменьшить потери на проводах линий электропередач (соединяющих генерирующие станции с нагрузками) путем повышения переменного напряжения и понижения переменного тока. На обоих концах (как на генераторе, так и на нагрузках) трансформаторы понижают уровни напряжения до более безопасных значений и снижают стоимость применяемого оборудования. Трансформатор, который на выходе (во вторичной обмотке) вырабатывает более высокое напряжение, чем приложено на входе (к первичной обмотке), называется повышающим трансформатором (его вторичная обмотка имеет больше витков, чем первичная). И наоборот, понижающий трансформатор вырабатывает на своем выходе меньшее напряжение, чем подается на его вход, поскольку его вторичная обмотка имеет меньшее число витков по сравнению с первичной.

Посмотрите еще раз на фотографию, показанную в предыдущей статье:

На поперечном разрезе трансформатора хорошо видно первичную и вторичную обмотки.

Это понижающий трансформатор, о чем свидетельствует большое количество витков первичной обмотки и малое число витков вторичной обмотки. Он преобразует высокое напряжение и маленький ток в низкое напряжение и большой ток. Благодаря большому току вторичной обмотки, в ней используется провод большого сечения. Первичная обмотка, ток в которой имеет небольшую величину, может быть выполнена из провода меньшего сечения.

Любой из рассмотренных типов трансформаторов можно использовать по противоположному назначению (подключить вторичную обмотку к источнику переменного напряжения, а первичную обмотку — к нагрузке). В этом случае трансформатор будет выполнять противоположную функцию: понижающий трансформатор будет функционировать как повышающий, и наоборот. Однако, для эффективной работы трансформатора индуктивности каждой из его обмоток должны быть спроектированы под конкретные рабочие диапазоны напряжения и тока (этот вопрос рассматривался в предыдущей статье). Поэтому, при использовании трансформатора по "противоположному" назначению, напряжения и токи его обмоток должны оставаться в исходных конструктивных параметрах. Только в этом случае трансформатор будет эффективен (и не будет поврежден чрезмерным напряжением или током!).

Трансформаторы часто имеют такую конструкцию, что не очевидно, какие провода принадлежат к первичной обмотке, а какие к вторичной. Во избежание путаницы, на многих трансформаторах (в основном импортного производства) используется обозначение "Н" для высоковольтной обмотки (первичная обмотка в понижающем трансформаторе, вторичная обмотка в повышающем трансформаторе), и обозначение "X" для низковольтной обмотки. Поэтому простой силовой трансформатор будет иметь провода с надписью «H1», «H2», «X1» и «X2».

Если вы вспомните, что мощность равна произведению напряжения и тока, то поймете почему напряжение и ток всегда движутся в "противоположных направлениях" (если напряжение увеличивается, то ток уменьшается, и наоборот). Вы так же поймете, что трансформаторы не могут производить энергию, они могут только преобразовывать ее. Любое устройство, которое могло бы произвести больше энергии, чем потребило, нарушило бы Закон сохранения энергии (энергия не может быть создана или уничтожена, она может быть только преобразована).

Практическая значимость вышесказанного становится более очевидной, когда рассматривается альтернатива: до появления эффективных трансформаторов, преобразование уровней напряжения и тока могло быть достигнуто только за счет использования установок, содержащих моторы и генераторы:

Установка мотор/генератор иллюстрирует основной принцип трансформатора

В этой установке мотор механически соединен с генератором. Генератор предназначен для получения желаемых уровней напряжения и тока за счет скорости вращения мотора. В то время, как и мотор и генератор являются достаточно эффективными устройствами, использование их в связке не обладает достаточной эффективностью, так что общий КПД установки находится в диапазоне 90% или менее. Кроме того, движущиеся части данных установок подвержены трению и механическому износу, а это, в свою очередь, влияет как на срок службы, так и на производительность. Трансформаторы же, с другой стороны, способны преобразовывать переменное напряжение и ток с очень высокой эффективностью без движущихся частей, что делает возможным широкое распространение и использование электроэнергии, которую мы считаем само собой разумеющимся.

Читайте также:  Причины возникновения дефектов сварных швов

Справедливости ради стоит сказать, что установки мотор/генератор не обязательно являются устаревшими в сравнении с трансформаторами во всех сферах применения. Если трансформаторы явно превосходят моторы/генераторы в преобразовании переменного напряжения и тока, то они не могут преобразовать одну частоту переменного тока в другую, а также преобразовать (сами по себе) постоянное напряжение в переменное или наоборот. Установки мотор/генератор могут все это делать относительно просто, хотя и с некоторыми ограничениями эффективности, описанными выше. Эти установки также обладают уникальным свойством сохранения кинетической энергии: то есть, если по какой-либо причине источник питания мотора мгновенно отключается, его угловой момент (инерция вращательного движения) будет еще некоторое время поддерживать вращение генератора, изолируя тем самым нагрузку (питаемую генератором) от «сбоев» в основной энергосистеме.

При внимательном просмотре цифр в SPICE анализе вы должны увидеть соотношение между коэффициентом трансформации и двумя индуктивностями. Обратите внимание на то, что первичная обмотка (l1) имеет в 100 раз большую индуктивность, чем вторичная (10000 Гн против 100 Гн), и что напряжение было понижено с 10 В до 1 В (в 10 раз). Обмотка с большей индуктивностью имеет более высокое напряжение и меньший ток. Поскольку обе обмотки трансформатора намотаны вокруг одного и того же сердечника (для наиболее эффективной магнитной связи между ними), параметры, влияющие на их индуктивность равны, за исключением количества витков в каждой из обмоток. Если мы еще раз взглянем на формулу индуктивности, то увидим, что индуктивность катушки пропорциональна квадрату числа ее витков:

Таким образом, должно быть очевидно, что две обмотки трансформатора в вышеприведенном SPICE моделировании при соотношении их индуктивностей 100 : 1 должны иметь соотношение витков провода 10 : 1, так как 10 в квадрате равно 100. Поскольку соотношение витков соответствует соотношению между первичным и вторичным напряжениями и токами (10 : 1), мы можем сказать, что коэффициент трансформации напряжения и тока равен соотношению витков провода между первичной и вторичной обмотками.

Повышающее / понижающее действие соотношения витков обмоток в трансформаторе аналогично соотношениям шестеренок в механических редукторных системах, которые преобразуют значения скорости и крутящего момента во многом таким же образом:

Повышающие и понижающие трансформаторы, применяющиеся для распределения электроэнергии, могут иметь гигантские размеры (сопоставимые с размером дома). На следующей фотографии показан трансформатор подстанции высотой около четырех метров:

Обзор:

  • Трансформаторы «повышают» или «понижают» напряжение в соответствии с соотношениями витков первичных и вторичных обмоток.

  • Коэффициент трансформации напряжения равен квадратному корню из отношения индуктивности первичной обмотки к индуктивности вторичной обмотки.

обмотка низшего напряжения трансформатора — обмотка НН Основная обмотка трансформатора, имеющая наименьшее номинальное напряжение по сравнению с другими его основными обмотками. Примечание. Обмотка низшего напряжения регулировочного трансформатора может иметь более высокий уровень изоляции … Справочник технического переводчика

обмотка среднего напряжения трансформатора — обмотка СН Основная обмотка трансформатора, номинальное напряжение которой является промежуточным между номинальными напряжениями обмоток высшего и низшего напряжения. Примечание. Обмотка среднего напряжения регулировочного трансформатора может… … Справочник технического переводчика

Обмотка среднего напряжения трансформатора — 4.9. Обмотка среднего напряжения трансформатора* Обмотка СН Основная обмотка трансформатора, номинальное напряжение которой является промежуточным между номинальными напряжениями обмоток высшего и низшего напряжения. Примечание. Обмотка среднего… … Словарь-справочник терминов нормативно-технической документации

обмотка низшего напряжения автотрансформатора — обмотка НН Совокупность витков, в которых индуктируется электродвижущая сила, используемая для получения низшего напряжения автотрансформатора [ГОСТ 16110 82] Тематики трансформатор Классификация >>> Обобщающие термины обмотка… … Справочник технического переводчика

обмотка низшего напряжения — обмотка низшего напряжения* Обмотка, имеющая наименьшее номинальное напряжение (МЭС 421 03 04). Примечание — В линейном регулировочном трансформаторе обмотка, имеющая низшее номинальное напряжение, может иметь более высокий уровень изоляции … Справочник технического переводчика

Читайте также:  Эл бойлеры для горячей воды

обмотка среднего напряжения — обмотка среднего напряжения* Обмотка многообмоточного трансформатора, номинальное напряжение которой является промежуточным между номинальными напряжениями обмоток высшего и низшего напряжений (МЭС 421 03 05). * Обмотка, к которой при… … Справочник технического переводчика

обмотка — 3.26 обмотка с непосредственным жидкостным охлаждением: Обмотка, охлаждаемая, главным образом, при помощи первичной охлаждающей среды, протекающей в непосредственном контакте с охлаждаемой частью по полым проводникам, трубкам или каналам, которые … Словарь-справочник терминов нормативно-технической документации

обмотка трансформатора — Совокупность витков, образующих электрическую цепь, в которой суммируются электродвижущие силы, наведенные в витках, с целью получения высшего, среднего или низшего напряжения трансформатора или с другой целью: Примечания: 1. В трехфазном и… … Справочник технического переводчика

Обмотка трансформатора — 4.2. Обмотка трансформатора Совокупность витков, образующих электрическую цепь, в которой суммируются электродвижущие силы, наведенные в витках, с целью получения высшего, среднего или низшего напряжения трансформатора или с другой целью.… … Словарь-справочник терминов нормативно-технической документации

обмотка стержня — обмотка стрежня Часть или целая обмотка высшего, среднего или низшего напряжения, расположенная на стержне трансформатора. Примечание . В автотрансформаторе под обмоткой стержня подразумевается общая или последовательная обмотка [ГОСТ 16110 82]… … Справочник технического переводчика

Большинство бытовых приборов не могут напрямую подключаться к электросети в 220В. Для их питания необходимо пониженное напряжение и получить его можно только при использовании специального оборудования. К таким приборам относится понижающий силовой трансформатор. Этот прибор способен преобразовывать переменное напряжение одного значения в такой же параметр, только с другими показателями. Он широко используется в радиоэлектронной и электротехнической отраслях промышленности, в быту.

Конструктивные особенности

Основным блоком агрегата является ферромагнитная катушка. Ее обмотки выполнены из медных проводов. По принципу действия они делятся на первичные – на них подается напряжение из сети и вторичные – с которых оно снимается потребителями.

Между собой их связывает переменное магнитное поле, наводимое в сердечнике трансформатора электронного понижающего. При этом между ними отсутствует электрический контакт. У таких моделей число витков на первичной обмотке больше, чем у вторичной, что приводит к уменьшению параметров на выходе.

Все рабочие детали трансформатора напряжения понижающего, располагаются в корпусе, но есть приборы и не имеющие его. Наличие или отсутствие кожуха зависит от технологии изготовления устройства. В одном случае – это сердцевина, заключенная в обмотке, выполненной в стержневом виде. Во втором сердечник находится внутри броневого вида, при котором витки могут располагаться как вертикально, так и горизонтально.

На чем основывается работа оборудования

Функционирование таких приборов основывается на законе Фарадея или явлении электромагнитной индукции. Она заключается в следующем. На первичную обмотку трансформатора электронного понижающего поступает напряжение. При этом переменный ток проходя через нее приводит к созданию магнитного поля. Это обеспечивает появление напряжения во вторичной обмотке за счет возбуждения электродвижущей силы.

Смотрим видео, принцип работы прибора:

Соотношение параметров приблизительно соответствует числу витков в соответствующих обмотках трансформаторов понижающих однофазных. Поэтому уменьшение напряжения приводит к повышению силы тока. Кроме этого в процессе работы оборудования неизбежны незначительные потери энергии, не превышающие 2-3% и мощности.

Виды и их особенности

Приборы, используемые для преобразования напряжения, представлены различными модификациями. В зависимости от типа сердечника они подразделяются на:

Технические характеристики у понижающих трансформаторов почти не отличаются, в то время как способ изготовления у каждого из представленных видов особенный.

Смотрим видео, виды и их классификация:

Среди всего разнообразия моделей наибольшее распространение получили сухие трансформаторы напряжения понижающие. Но очень часто находят применение и силовые приборы, работающие на масле.

Трансформатор электронный понижающий первого типа получает питание от сети, в которой ток течет по четырем проводам, три из которых – это фаза и один – ноль. Однофазные получают ток, протекающий по двух проводам. В жилых домах обычно используются именно такие сети.

Силовые масляные трансформаторы понижающие трехфазные имеют идеальный единичный коэффициент, а некоторые из них могут преобразовывать напряжение равное 600В. Обычно такими параметрами характеризуются крупногабаритные приборы, использующиеся на производстве. Есть среди трансформаторов электронных понижающих, и компактные, предназначенные для применения в быту.

Читайте также:  Распиновка hdmi разъема на тюльпан

Различают оборудование и по выходному напряжению. Оно может быть, как 12 так 380В. Возможно некоторые собирают трансформатор своими руками. Особых сложностей в этом нет, а инструкцию и схему можно легко найти в сети.

Основные характеристики

Маркировка оборудования зависит от его параметров. И чтобы в ней разобраться необходимо знать все его технические характеристики. Поскольку трансформаторы электронные понижающие бывают одно- или трехфазными, то и параметры у них будут соответственно отличаться.

Основными для рассматриваемых приборов считаются такие показатели, как:

И если первый параметр будет неизменным у различных моделей, то все остальные имеют существенные различия. Причем габариты и все увеличиваются вместе с возрастанием мощности. Наибольшего значения эта характеристика достигает у больших промышленных устройств. Но и габариты такого трансформатора электронного понижающего весьма впечатляющие.

В то же время бытовые модели отличаются небольшими размерами и массой. Они легки в транспортировке и монтаже.

Как правильно выполнить расчет?

Отличие понижающих приборов от повышающих состоит в соотношении количества витков на обмотках. И именно этот параметр называется коэффициентом трансформации напряжения. У всех повышающих моделей этот параметр меньше единицы.

Выполнить расчет понижающего трансформатора можно основываясь на законах физики. Выполняется это следующим образом. Доказанным фактом является утверждение, что работа прибора основана на явлении электромагнитной индукции. Ток, проходя по обмотке приводит к появлению магнитного потока. Он возбуждает ЭДС. А так как сердечник трансформаторов напряжения понижающих бытовых изготавливается из стали, то он концентрирует магнитное поле с потоком внутри него.

Определить значение ЭДС в одном витке можно основываясь на законе Фарадея по формуле:

Ф- производная потока магнитной индукции по времени.

Основываясь на этом равенстве и проведя ряд вычислений получаем следующее соотношение:

U1/U2 ≈ E1/E2 = N1/N2 = К, где

U1 и U2 – действующие напряжения;

N1 и N2 – число витков.

Если исходя из этой формулы коэффициент получается больше 1, значит, ваш прибор понижающий.

Назначение обмоток

Устройство трансформатора напряжения понижающего, было рассмотрено выше, а в этом разделе будет рассказано об одном из самых важных элементов. Это первичная и вторичная обмотки. Они располагаются на магнитопроводе понижающих трансформаторов. Причем ближе к нему находится та, на которой более низкое напряжение. Такое расположение не случайно, так как ее легче изолировать.

Смотрим видео, правильное подключение трансформатора к сети:

Между ними находятся прокладки или другие изоляционные детали, которые чаще всего выполняются из электрокартона.

Первичная обмотка подключается к источнику переменного напряжения, а вторичная к устройствам, потребляющим энергию. Причем к одному трансформатору может быть одновременно подключено несколько таких приборов.

Для выполнения обмотки используются провода, изолированные кабельной бумагой. Они могут иметь различные типы сечения:

По способу расположения они делятся на:

  • Располагаемые на стержнях концентрически;
  • Дисковые наматываемые в порядке чередования.

Преимущества и недостатки

Использование рассматриваемого оборудования не только в промышленности, но и в быту объясняется не только необходимостью снижения напряжения до безопасной для человека величины 12В. Такие приборы отличаются нетребовательностью к входным параметрам. Они способны работать при напряжении в 110В, обеспечивая постоянное его значение на выходе.

К недостаткам понижающих трансформаторов можно отнести;

  • Ограниченный емкостной ресурс, ограниченный 5 годами;
  • Малую мощность, лучшие из них не способны обеспечивать более 30 Вт;
  • Более высокая стоимость, чем у индуктивных моделей.

Но в то же время у них не мало и преимуществ. Одним из основных являются более компактные габариты и вес, что делает из более удобными в монтаже и транспортировке. Также эти приборы не создают радиопомех и способны обеспечить плавное увеличение напряжения. Понижающие трансформаторы меньше нагреваются. Этот параметр очень часто оказывается решающим при выборе оборудования.

Оснащение некоторых моделей терморегуляторами позволяет им отключаться при перегреве электросхем и КЗ, тем самым продлевая срок службы.

Отправить ответ

  Подписаться  
Уведомление о
Adblock
detector