Провода для пайки микросхем

Каждый начинающий электронщик задавался вопросом: “А как паять микросхемы, ведь расстояние между их выводами бывает очень маленькое?” Про различные типы корпусов микросхем можно прочитать в этой статье. Ну а в этой статье я покажу, как паяю SMD микросхемы, выводы которых находятся по периметру микросхемы. У каждого электронщика свой секрет пайки таких микросхем. В этой статье я покажу свой способ.

Демонтаж старой микросхемы

У каждой микросхемы имеется так называемый “ключ”. Я его выделил в красном кружочке.

Это метка, с которой начинается нумерация выводов. В микросхемах выводы считаются против часовой стрелки. Иногда на самой печатной плате указано, как должна быть припаяна микросхема, а также показаны номера выводов. На фото мы видим, что краешек белого квадрата на самой печатной плате срезан, значит, микросхема должна стоять в эту сторону ключом. Но чаще все-таки не показывают. Поэтому, перед тем как отпаять микросхему, обязательно запомните как она стояла или сфотографируйте ее, благо мобильный телефон всегда под рукой.

Для начала все дорожки обильно смазываем гелевым флюсом Flux Plus.

Выставляем температуру фена на 330-350 градусов и начинаем “жарить” нашу микросхему спокойными круговыми движениями по периметру.

Хочу похвастаться одной штучкой. У меня она шла в комплекте сразу с паяльной станцией. Я ее называю экстрактор микросхем.

В настоящее время китайцы доработали этот инструмент, и сейчас он выглядит примерно вот так:

Вот так выглядят для него насадки

Как только видим, что припой начинает плавиться, беремся за край микросхемы и начинаем ее приподнимать.

Усики экстрактора микросхемы обладают очень большим пружинящим эффектом. Если мы будем поднимать микросхему какой-нибудь железякой, например, пинцетом, то у нас есть все шансы вырвать вместе с микросхемой и контактные дорожки (пятачки). Благодаря пружинящим усикам, микросхема отпаяется от платы только в тот момент, когда припой будет полностью расплавлен.

Вот и наступил этот момент.

Монтаж новой микросхемы

С помощью паяльника и медной оплетки чистим пятачки от излишнего припоя. На мой взгляд самая лучшая медная оплетка – это Goot Wick .

Вот что у нас получилось:

Далее берем паяльник с припоем и начинаем лудить все пятачки, чтобы на них осел припой.

Должно получиться вот так

Здесь главное не жалеть флюса и припоя. Получились своего рода холмики, на которые мы и посадим нашу новую микросхему.

Теперь нам нужно очистить все это дело от разного рода нагара и мусора. Для этого используем ватную палочку, смоченную в Flux-Оff, либо в спирте. Подробнее про химию здесь. У нас должны быть чистенькие и красивые контактные дорожки, приготовленные под микросхему.

Напоследок все это чуточку смазываем флюсом

Ставим новую микросхему по ключу и начинаем ее прожаривать, держа при этом фен как можно более вертикальнее, и круговыми движениями водим его по периметру.

Напоследок чуток еще смазываем флюсом и по периметру “приглаживаем” контакты микросхемы к пятакам с помощью паяльника.

Думаю, это самый простой способ запайки SMD микросхем. Если же микросхема новая, то надо будет залудить ее контакты флюсом ЛТИ-120 и припоем. Флюс ЛТИ-120 считается нейтральным флюсом, поэтому, он не будет причинять вред микросхеме.

Думаю, теперь вы знаете, как паять микросхемы правильно.

Паяльник используется для широкого спектра работ. С помощью паяльника можно отремонтировать наушники, подсоединить светодиодную ленту, чинить электроприборы, микросхемы и платы. Пайка с помощью паяльника проста и при внимательной подготовке не вызывает затруднений даже у того, кто никогда раньше не сталкивался с такой работой.

Содержание:

Выбор инструмента

Паяльник – инструмент с нагревательным элементом, используемый для соединения плавких материалов. По способу нагревания их разделяют на:

  • электрические;
  • термовоздушные;
  • газовые;
  • индукционные.

Для работы с электрическими схемами и SMD-платами применяют электрические паяльники. В среднем они обладают мощностью в 15-40 Ватт. С помощью приборов мощностью более 100 Вт спаивают большие детали: радиаторы, медные трубки разного диаметра и т.д. Большие молотковые паяльники мощностью до 550 Вт используются в различных сферах промышленности: машиностроение, металлургия и т.п.

На выбор того или иного инструмента влияет не только размер деталей, но и теплопроводность материала, из которого она сделана. Именно она определяет температуру нагрева, а, следовательно, и необходимую мощность. Так, например, медь может требовать большей температуры нагрева, чем стальная деталь аналогичного размера. Стоит отметить, что при пайке медных деталей может даже возникать ситуация, когда высокая теплопроводность приводит к распаиванию соединений, выполненных ранее.

Основным элементом прибора (напоминаю, что работаем мы в основном электрическим) является нагревательный стрежень. Он представляет собой медную трубку и намотанную на неё нихромовую спираль. С одной стороны стержня, спрятанной в рукоятку прибора, идет ток, а с другой – вставлено жало из накатанного медного прута. Наконечник жала затачивается под скос. Нагрев наконечника происходит за счет замыкания тока на нихромовой спирали.

Для электротехнических работ подойдет легкий инструмент компактных размеров с низкой теплоемкостью. Чтобы избежать рассеивания напряжения лучше выбрать модель, имеющую трех-направляющий штекер заземления. Для начинающего электротехника будет достаточно модели до 30 Вт. Если с помощью паяльника планируется ремонтировать автомобиль, то лучше обратиться 40-ваттным приборам – для быстрого соединения проводов любого типа на большой площади. Для комфортной работы паяльников в автомобиле продаются специальные насадки.

Читайте также:  Художник гравер по дереву

Многие мастера по ремонту электроники пользуются паяльной станцией. Такая конструкция включает в себя набор всех необходимых для паяльных работ инструментов: паяльник со сменными наконечниками, подставка, блок регулировки напряжения, термофен, очистители и оловоотсос.

Многих интересует вопрос, можно ли паять без паяльника. Да, можно, в данном случае припой и детали придется нагревать для лужения и спаивания на открытом огне. Это позволяет создавать более-менее качественные соединения, однако технология отличается меньшей безопасностью. Кроме того, у новичка, не обладающего достаточным опытом, могут возникнуть большие сложности при работе с такими материалами, как медь, алюминий или нержавейка.

Припои и флюсы

Перед тем как паять провода или электрические схемы необходимо выбрать подходящий припой. Для этой работы подходят оловянно-серебряные и оловянно-свинцовые припои, канифоль. Припои с содержанием свинца обеспечивают более высокое качество пайки, однако имеют недостаток, заключающийся во вредности этого металла. Оловом пользуются для пайки деталей и материалов, требующих сохранения безопасности для организма, например, посуды.

Маркировка припоев обозначает металлы, входящие в ее состав и их содержание. Так, к примеру, в состав припоя ПОС-40 входят олово и свинец (припой оловянно-свинцовый). Цифра 40 говорит о 40% содержании олова. Количество свинца в ПОС припоях влияет на цвет (становится темнее) и температуру плавления (повышается). Для электротехнических работ чаще всего применяют ПОС с содержанием олова от 30% до 61%, а также ПСР-2 и ПСР-2,5. В маркировке оловянно-серебряного ПСр-2,5 цифра обозначает, что 2,5±0,3% припоя составляет серебро.

Для зачистки поверхности под пайку от оксидов используется специальные смеси – флюсы. Они являются одними из самых важных факторов, влияющих на качество паяния. Флюс должен подбираться под свойства паяемого материала, быть достаточно сильным для разрушения оксидной пленки. Активные флюсы на основе кислоты запрещено использовать для пайки микросхем и плат, поскольку они вызывают коррозию и разрушают контакты, однако при работе с химически стойкими металлами без них не обойтись. Сегодня при пайке, как правило, пользуются паяльной кислотой (хлорид цинка), спирто-канифольным раствором ЛТИ-120 и бурой (для пайки таких металлов, как медь, чугун, сталь, латунь).

Если вы собираетесь паять наушники, колонки или контакты материнской платы, то в качестве флюса можно использовать канифоль. Однако не следует использовать ее для пайки элементов микросхемы и плат. И особое внимание обратите на следующее: нельзя использовать канифоль для музыкальных инструментов! Она сильно загрязняет место спайки.

Рекомендуем к просмотру это видео. Оно может раскрыть оставшиеся вопросы о флюсах и припоях.

Подготовка к работе

Безусловно, для того, чтобы стать мастером и выполнять пайку деталей любых сложностей, необходимо время и опыт. Однако для того, чтобы починить наушники, прикрепить светодиодную ленту или в домашних условиях поменять конденсаторы на компьютерной плате не нужно обладать особыми знаниями. Соблюдение инструкции и правил электротехнической безопасности позволят выполнить эти работы без затруднений.

Огромное значение для качества и эффективности пайки имеет состояние жала. Процесс ухода за ним называют лужением — процесс покрытия его поверхности тонким слоем припоя. Это делается для того чтобы медь, из которой изготовлен наконечник паяльника, не окислилась. Паяльник с окислившимся жалом плохо взаимодействует с припоем и обрабатываемым материалом. Каждый раз, перед тем как паять паяльником, следует проводить его подготовку. Сначала обрабатываем жало холодного паяльника напильником, или жесткой щеткой, очищая медь от грязи.

Затем, нагрев паяльник до рабочей температуры, нужно несколько раз поочередно коснуться им канифоли и затем припоя. Сплав должен равномерно покрыть рабочую часть.

Ниже видео о том как залудить паяльник и приготовить его к работе. Пожалуй на видео даже лучше видно, чем на наших фотографиях, так что рекомендуем посмотреть.

Пайка плат и микросхем

Очень часто электрические паяльники используют для пайки печатных плат. Для этого подойдет специальный небольшой прибор средней мощности. Более подробно рекомендуем прочитать статью о выборе паяльников для плат и микросхем.

    Для начала надо подготовить поверхность, чтобы она обеспечила минимальное сопротивление и прочное соединение. Для обезжиривания платы ее можно протереть салфеткой, смоченной в мыльном растворе. Для снятия твердых отложений подойдет специальное средство, продающееся в профильном магазине. Рабочий участок необходимо зачищать до того момента, пока медь не станет блестеть. Для обработки контактов можно воспользоваться обычным ацетоном. Менее пахучим и опасным растворителем является метил гидрат.

Ниже видео, которое наглядно описывает весь процесс:

Такой способ пайки позволяет новичку без особых затруднений припаять к схеме радиатор, впаять кнопку на модем, светодиодную ленту (об этом более подробно будет ниже) или отремонтировать штекер.

Пайка проводов

Умение паять провода может пригодиться во многих ситуациях. Одним из самых подходящих примеров можно назвать вышедшие из-за перелома провода наушники. Для соединения проводов используют два основных способа:

  1. Жилы накладываются друг на друга и спаиваются с помощью припоя.
  2. Жилы проводов предварительно скручиваются между собой и потом лудятся с помощью припоя.

В обоих случаях используется канифоль. При необходимости очистки проводов применяется жидкий флюс, наносимый с помощью кисточки. Другие способы спайки проводов между собой основываются на двух основных, описанных выше, и представлены на следующем рисунке.

Для пайки радиоэлементов без печатного монтажа прибегают к двум способам. Первый (нахлестный) является более быстрым, а второй (скрутка) обеспечивает большую надежность соединения.

Читайте также:  Методы исследования металлов и сплавов

Для того чтобы починить наушники лучше всего подойдет второй указанный способ (т.к. обеспечит большую прочность соединения). Порядок действий примерно следующий:

  1. Найдите поврежденный участок провода и вырежьте его. Зачистите края проводов на достаточную длину. Для снятия изоляции лучше всего пользоваться нагретым паяльником, или плоским, не очень острым ножом.
  2. Сложите провода друг с другом (по цветам) и залудите с помощью канифоли или смеси ФС-1.
  3. Замотайте обработанное место изолентой.

Если провод поврежден у самого штекера или входа в наушники, необходимо будет разобрать корпус и припаять провода непосредственно к входным контактам.

Пайка светодиодной ленты

Сегодня светодиодную ленту активно используют для монтажа интерьерного освещения различной сложности. Она дает широкие дизайнерские возможности, имеет небольшие размеры и не уступает по рабочим характеристикам другим осветительным приборам.

Вне зависимости от размера и условий монтажа, ленту паяют по одинаковой инструкции:

  1. Обрезав ленту до нужной длины, поверхность, на которую она должна крепиться, обезжиривают и высушивают.
  2. Оторвав защитную пленку с обратной стороны, ленту приклеивают к монтажной поверхности.
  3. После этого припаиваются провода на входных контактах, мелкие детали, диммеры, контроллеры. Во время работы нужно избегать перегрева ленты, это может привести к выходу диодов из строя.

Обратите внимание, спаивая две ленты! Плюс должен идти к плюсу, а минус к минусу!

Процесс припаивания изображен на фотографиях ниже:

Чтобы паять диодную ленту хорошо подходят паяльники мощностью до 40 Вт. Лучше всего использовать провода с сечением 0,75 мм. Красные припаиваются к плюсовому контакту, а черные – к минусовому.


Теперь о том, как паять светодиоды непосредственно на плату, чтобы создать светодиодную подсветку своими руками. Для этого понадобятся сами диоды, кусочек платы для них (можно купить в радиотехническом магазине) и паяльные принадлежности. Для очистки от окалины воспользуемся флюсом под алюминий, оловом – в качестве припоя.

  1. Вставляем диоды в плату так, чтобы плюсовые контакты (длинные «лапки») были расположены с одной стороны, а минусовые – с другой. И загибаем контакты в стороны. Будьте внимательно – если хотя бы один диод будет подключен неправильно, всё сгорит.
  2. Обработав «лапки» флюсом припаиваем их к плате.
  3. Отрезаем лишнюю длину контактов с помощью кусачек. Зачищаем провода питания на длину, равную длине диодного ряда, прикладываем к соответствующим контактам и запаиваем.
  4. Готово! Теперь можно проверять работу схемы, подключив провода к 12 В источнику питания.

Пайка алюминия

Кажется, что в том, как паять алюминий, нет никакой сложности. Ведь этот материал обладает высокой теплопроводностью и легко поддается обработке. Несмотря на это для обработки данного металла необходимо учитывать некоторые особенности.

Алюминий под воздействием высокой температуры очень быстро образует на поверхности окисные пленки, и поэтому для его пайки приходится использовать специальные флюсы и паяльные жала (покрытые сталью). И если обработка алюминиевых проводов практически не отличается от работы с другими металлами, то пайка плоских алюминиевых поверхностей — процесс гораздо более сложный. В первую очередь, вам понадобится паяльник мощностью в 60-100 Вт, для того чтобы хорошо прогревать большие детали.

  1. Перед тем, как паять алюминий, его рабочая поверхность очищается от окалины наждачкой или напильником.
  2. После ее обезжиривают бензином, ацетоном или другим растворителем. Затем место соединения необходимо смазать специальным флюсом.
  3. Жало паяльника опускается в канифоль или нашатырный спирт до появления легкого дымка. Это очищает медь, из которой выполнен наконечник, от окисей других металлов.
  4. Дальнейшие действия практически не отличаются от работы с другими материалами: жало смазывается в припое, после чего небольшое его количество переносится на место спаивания для залуживания. После этого наносится основной слой припоя.

Похожим образом паяют нержавейку – этот процесс тоже требует тщательной зачистки рабочей поверхности перед нанесением припоя.

Пайка является неотъемлемой частью ремонта оборудования с микросхемами и его создания. Это достаточно сложный процесс, которые требует наличия специального оборудования, так как здесь ведется работа с достаточно мелкими деталями. Паяльник для микросхем заметно отличается от того, который нужен для спаивания проводов. Его размеры заметно меньше, чем крупные модели для обыкновенных операций, а также жало обладает тонкой заточкой. Могут встречаться варианты со специальными видами заточек, которые рассчитаны преимущественно на выпаивание.

Паяльник электрический для микросхем является необходимым инструментом мастера по ремонту и любителя радиотехники. Модели могут быть в различном ценовом сегменте с отличающимися характеристиками. В любом случае, это будет ручной инструмент, который позволит наносить тонкий слой припоя и нагревать детали для спаивания и выпаивания их из схемы. Многие разновидности являются узкопрофильными и предназначаются для одного вида работ.

Особенности паяльников для микросхем

Одной из главных особенностей таких моделей является форма жала. Именно наконечник является основным рабочим инструментом. В зависимости от его формы и прочих особенностей можно понять, как именно будет работать устройство и для каких целей оно предназначено. Форма не единственный параметр, выделяющий паяльник для электроники среди остальных. Размер становится еще одним фактором, выделяющим этот тип устройств на фоне остальных. Маленький паяльник для микросхем позволяет проводить основные операции для работы с ними, тогда как большие стандартные модели оказываются достаточно грубыми для такой работы. Это же сказывается на мощности изделия. Для каждого вида работ мощность должна быть соответствующей, чтобы ее хватало для расплавления контактов, но чтобы паяльник ничего не пережигал.

Читайте также:  Как моет посуду посудомоечная машина видео

Виды паяльников для электроники

Основным различием, которое помогает разделить паяльники для электроники на разновидности, является вид нагревательного элемента, который в них используется. В последнее время технология производства позволяет выпускать множество разновидностей, которые отличаются друг от друга по характеристикам.

Нихромовые

Основным нагревательным элементом в таких паяльниках становится нихромовая проволока. Материал хорошо проводит электрические импульсы, что позволяет нагревать жало до нужной температуры достаточно быстро. Простые модели обладают спиралью, которая намотана на корпус не проводящий электричество. Чтобы проволока не теряла тепло, ее помещают в изоляторы. Подобные модели чаще всего применяются в бытовом непрофессиональном использовании.

  • Паяльник для радиодеталей с нихромовым нагревательным элементом долго нагревается;
  • Спираль быстро перегорает и ее приходится менять.
  • Простота в использовании;
  • Неприхотливость к внешним факторам;
  • Высокая ударостойкость.

Керамические

Паяльник для пайки микросхем телефонов с керамическим нагревательным элементов использует специальные стержни, которые подсоединяются к контактам дающим напряжение. Благодаря воздействию напряжения керамика нагревается до нужной температуры.

  • Тонкий паяльник для микросхем из керамики обладает длительным сроком эксплуатации;
  • Быстро нагревается до нужной температуры.
  • Высокая подверженность механическим повреждениям;
  • Жало заменить невозможно, если оно как-либо повредиться.

Индукционные

Точечный паяльник индукционного типа обладает всеми необходимыми качествами для спаивания микросхем. В нем присутствует ферромагнитное покрытие, которое обеспечивает образование магнитного поля на жале, а также есть катушка индуктора. Его особенностью является то, что когда достигается максимальная температура, то нагрев прекращается. Когда температура начинает понижаться, подача электричества возобновляется. Это обусловлено ферромагнитными свойствами покрытия.

  • Наличие автоматического подогрева;
  • Экономия энергии;
  • Неприхотливость в эксплуатации.
  • Чтобы подобрать оптимальное значение температуры нагрева, приходится менять наконечники, так как этот параметр поддерживается согласно точке Кюри.

Импульсные

Главным отличием данной модели является наличие частотного образователя, который имеет встроенный высокочастотный трансформатор. Сначала частота повышается, но через некоторое время она понижается до рабочего значения. Жало здесь является частью электрической цепи. Оно подключено к токосъемникам вторичной обмотки. Это обеспечивает прохождение больших токов сквозь обмотку и дает максимально короткое время нагревания. Функция нагрева включается тогда, когда нажимается соответствующая кнопка на паяльнике. Если ее отпустить, то устройство остывает.

  • Хороший паяльник для микросхем нагревается практически мгновенно;
  • Универсальность применения, как для крупных, так и для мелких деталей.
  • Импульсный паяльник для пайки микросхем не может использоваться для длительной работы.

Характеристики популярных моделей

Жало для паяльника для микросхем является не единственным, на что стоит обращать внимание. Здесь собраны основные характеристики наиболее популярных моделей, использующихся для работы с микросхемами.

Matrix 914044 Мощность устройства: 40 Вт

Период максимального нагрева: 3,3 минуты

Форма наконечника: конус

Материал рукояти: пластмасса

Rexant 120123 Мощность устройства: 40 Вт

Период максимального нагрева: 10 минуты

Форма наконечника: конус

Материал рукояти: пластмасса

Rexant 120240 Мощность устройства: 40 Вт

Период максимального нагрева: 7 минуты

Форма наконечника: клиновидная

Материал рукояти: дерево

Rexant ZD20U Мощность устройства: 8 Вт

Период максимального нагрева: 0,25 минуты

Форма наконечника: конус

Материал рукояти: пластмасса

Требования к паяльникам для радиодеталей

В среднем мощность паяльника должна быть около 10 Вт. Чем меньше будет данный параметр, тем больше шансов сохранить радиоэлементы в целости и сохранности. Не рекомендуется использовать очень мощные инструменты, поэтому одним из главных требованием является разумный подбор параметра относительно тех работ, для которых будет применяться устройство. Мощность паяльника для пайки микросхем может доходить и до 40 Вт, но профессионалы работают и с 4 Вт паяльником, если речь идет об особенно мелких деталях.

Жало должно быть крепким и хорошо очищаться. Как правило, это достаточно тонкие изделия, поэтому наличие крепкого материала является обязательным условием для долгосрочной работы. Здесь нередко используются материалы для жала, которые редко встречаются в больших паяльниках, что как раз и обусловлено данными требованиями.

Наличие дополнительных функций, кнопок отключения, расположенных на корпусе, специальных покрытий и прочих вещей определяется тем, для какой сферы предназначается паяльник. Все, что облегчит работы из вышеуказанных дополнений в определенной среде будет обязательным для конкретных моделях, где данная функция востребована.

Это касается преимущественно профессиональных устройств, так как бытовые будут значительно проще.»

Как выбрать хороший паяльник?

Рассматривая как выбрать паяльник для микросхем, стоит внимательно изучить следующие параметры устройства:

  • Мощность. Чем ниже мощность изделия, тем проще будет работать, так как при высокой температуре есть риск перепалить схему. 10 Вт является оптимальным значением для работы.
  • Напряжение. Зачастую напряжение в 220 В может испортить стандартную микросхему. В паяльниках встраивается блок питания, который понижает напряжение до 36В или даже 12В. Таким образом, лучшим выбором будут устройства с таким блоком питания.
  • Толщина жала. Участки для пайки могут иметь размер в десятые доли миллиметра. Здесь подойдут конусообразные жала, толщина которых составляет 1 миллиметр и менее, что может зависеть от заточки.
  • Терморегулятор. Для многих моделей наличие терморегулятора становится приятным дополнением. Очень важно во время работы сохранять постоянно одну и ту же температуру. Это дополнение помогает добиться нужного результата.

Производители

На современном рынке продукции можно встретить товары от следующих производителей:

Заключение

Паяльники для пайки микросхем относятся к узкопрофильным устройствам, но этот профиль очень широко распространен. Специалисты по ремонту, любители электроники и люди, паяющие сами микросхемы, не могут обойтись без хорошего специализированного паяльника. Разнообразие продукции на рынке с различными параметрами только подтверждает востребованность данной сферы.

Отправить ответ

  Подписаться  
Уведомление о
Adblock
detector