Схема для проверки конденсаторов

Как показала практика, при ремонте промышленной и бытовой радиоаппаратуры наиболее часто встречающаяся неисправность — полная (обрыв, пробой) или частичная потеря емкости как оксидных, так и любых других конденсаторов.

Предлагаемый прибор предназначен для измерения емкости испытываемого конденсатора без выпаивания его из узла, в котором он применен. Это достигается благодаря низкому входному сопротивлению прибора. Таким образом, резисторы, подключаемые к проверяемому конденсатору, практически не влияют на точность измерения.

Принципиальная схема

Принципиальная базовая схема прибора изображена на рис.1. Принцип его действия основан на измерении падения пульсирующего (50 Гц) напряжения на делителе, состоящем из резисторов R2, R9 и проверяемого конденсатора Сх.

Благодаря использованию на делителе пульсирующего (а не переменного, как это практикуется при проверке неполярных конденсаторов) напряжения, возможно измерение емкостей с более высокой точностью. Ведь электролитический конденсатор только при правильном подключении полярности остается конденсатором с "полноценной" емкостью.

Если же прибор планируется использовать для проверки только неполярных конденсаторов, диод VD2 (рис.1) можно исключить, заменив перемычкой.

Рис. 1. Принципиальная базовая схема прибора-испытателя конденсаторов.

Снимаемый с делителя сигнал усиливается операционным усилителем DA1 и через разделительный конденсатор С3 поступает на выпрямитель, выполненный на диодах VD7, VD8. Постоянная составляющая выпрямленного напряжения через цепь R4, R3 поступает на микроамперметр РА1, стрелка которого отклоняется на угол, обратно пропорциональный емкости испытываемого конденсатора.

Блок питания можно также собрать и по бестрансформаторной схеме (рис.2), однако, как показала практика, такой вариант исполнения менее эффективен из-за относительно большой чувствительности к помехам, проникающим из сети.

Рис. 2. Принципиальная схема бестрансформаторного блока питания.

Детали прибора

В приборе используют постоянные резисторы типа МЛТ, ОМЛТ или ВС, переменные резисторы типа СП4-1 (СП5-2). Конденсаторы С1, С5 — КМ-6, С4 — ЭТО-1, остальные — К50-6, К50-16. При отсутствии микросхемы DA2 стабилизатор можно собрать на транзисторе по схеме, изображенной на рис.3. Трансформатор Т1 намотан на тороидальном трансформаторном железе типоразмера К47х32х24.

Обмотка I содержит 5000 витков провода ПЭВ-2 Ж0,1 мм, обмотка II — 345 витков ПЭВ-2 Ж0,2 мм, III — 340 витков ПЭВ-2 Ж0,25 мм. Трансформатор Т1 можно применить и готовый, имеющий две независимые вторичные обмотки по 15 В мощностью более 1 Вт.

Второй вариант прибора

Более совершенна схема прибора, изображенного на рис.4. Его основное отличие в том, что импульсы, поступающие на делитель, формируются собственным задающим генератором, собранным на логической микросхеме DD1.

Благодаря этому прибор дополнительно приобретает еще три существенных положительных качества:

  1. Стабильность работы и еще более высокая точность, благодаря независимости от величины и частоты сетевого напряжения (ведь, ни для кого не секрет, что оно колеблется в достаточно широких пределах);
  2. Увеличение пределов измерения путем порогового изменения частоты задающего генератора;
  3. Возможность питания от автономного источника питания, например батареи типа "Корунд".

Типы деталей используют те же, что и на рис.1.

Рис. 4. Принципиальная схема прибора-испытателя конденсаторов (вариант 2).

Микросхему К561ЛА7 без каких-либо схемных изменений можно заменить на К561ЛЕ5.

Для подключения прибора к проверяемому конденсатору и прокалыванию защитного лака, которым обычно покрыты печатные платы радиоаппаратуры, рекомендуется изготовить специальные щупы.

По сути, это два корпуса от шариковых ручек, в которые вместо пасты вставлены отрезки стальной проволоки (удобно использовать отслужившие велосипедные спицы), заостренные с одной стороны. К утолщенным концам припаивают гибкий экранированный провод, который подключают к гнездам XS1, XS2. Для удобства концы стержней можно слегка изогнуть.

Читайте также:  Узо на входе в квартиру

Налаживание прибора сводится к подгонке (сопротивления резисторов R11, R12 устанавливают в среднее положение) шкалы путем измерения емкости заведомо исправных конденсаторов с возможно меньшим допускаемым отклонением емкости от номинала (это, например, конденсаторы К52-1, К53-1, К53-4, К76П-1 и т.п.

Шкалу микроамперметра градуируют непосредственно в микрофарадах. Перед измерением шкалу калибруют переменным резистором R12, ось которого выведена на лицевую панель;устанавливают стрелку микроамперметра РА1 на отметку "0" (100 мкА при использовании головки с данным максимальным отклонением).

Пределы измерения при необходимости можно сместить в сторону больших или меньших значений, для этого следует лишь соответственно изменить емкость конденсатора С1 или сопротивления подстроечных резисторов R2-R4, а также подкорректировать сопротивление резистора R5 (рис.4).

При измерении емкости неполярных конденсаторов полярность подключения прибора не имеет значения. Печатная плата и размещение элементов показаны на рис.5.

Автор: С.В. Прус, г. Староконстантинов, Хмельницкая обл.

Литература: 1. Болгов. А. Испытатель оксидных конденсаторов // Р-1989.-№6.

Здравствуйте, дорогие друзья. В этой статье представлена схема очень простого и, вместе с тем, довольно эффективного пробника для быстрого выявления неисправных электролитических конденсаторов, которые даже не обязательно выпаивать из платы.

Работа схемы пробника

Принцип работы прибора основан на том факте, что при коротком замыкании витков обмотки III в ней возникает переменный ток большой величины. Это приводит к срыву генерации колебаний блокинг-генератора и светодиод, являющийся по сути индикатором работы генератора, при этом гаснет.

Когда мы к концам обмотки III подключаем испытываемые электролитические конденсаторы, то переменный ток частотой около сотни КГц, протекающий в образовавшейся цепи, будет зависеть от сопротивления этих конденсаторов. Исправные электролитические конденсаторы меют меньшее сопротивление переменному току одинаковой частоты, нежели неисправные. Таким образом, при подключении к концам обмотки III исправных конденсаторов в ней будет течь большой ток, а при подключении неисправных — маленький. Поэтому, при подключении пробника к неисправным электролитам светодиод ярко светит, а при подключении к исправным — свечение отсутствует или еле заметно.

Проверяемые конденсаторы нет необходимости выпаивать из платы. Но сама плата не должна находится под напряжением, ее надо обесточить и подождать некоторое время, необходимое для разрядки конденсаторов!

При повторении схемы помните о том, что щупы пробника должны припаиваться к обмотке III как можно более короткими проводниками!

Данные по намотке трансформатора в схеме пробника смотрите в моей статье Простейшая схема питания светодиода от батарейки АА или ААА

Настройка

Настройка заключается в подборе количества витков обмотки III таким образом, чтобы при подключении к ней сопротивления номиналом 0,5 ом, светодиод издавал чуть заметное при дневном освещении свечение. Обычно обмотка III содержит 2-4 витка.

Схема № 1

Часто в руки радиолюбителей попадают электролитические конденсаторы, качество которых вызывает сомнение. Дело в том, что с течением времени электролит в них высыхает и их емкость падает. Иногда почти до нуля. Устанавливать такие конденсаторы в схему, конечно, нельзя. Но как их проверить? Как узнать, годится этот конденсатор или нет? Приборы, предназначенные для измерения емкости электролитических конденсаторов, сложны и дороги. В любительских условиях вполне можно обойтись простейшим прибором, описание которого приведено в этой статье. Он позволяет проверить работоспособность конденсаторов, в том числе и электролитических, с рабочим напряжением более 4,5 В и емкостью от 0,5 до 1000 мкФ. Таким образом можно определить пробой в конденсаторе, наличие большой утечки и ориентировочно оценить даже его емкость.

Читайте также:  Поделки с использованием клеевого пистолета

Конечно, точность определения емкости невелика, но вполне достаточна, чтобы ответить, можно или нельзя устанавливать данный конденсатор в схему.

Принципиальная схема прибора приведена на рисунке 1.

Как видно из схемы, прибор представляет собой несимметричный мультивибратор, собранный на транзисторах разной проводимости.

Принцип действия прибора основан на том, что его частота зависит от величины емкости параллельно включенных конденсаторов С1 и Сх. Индикатором колебаний служит лампа накаливания H1. Питается прибор от батареи Б1.

При включении питания оба транзистора открываются. Вспыхивает лампочка, и через резистор R1 начинает заряжаться конденсатор С1. Ток заряда проходит по цепи база-эмиттер V1, открывая его. когда конденсатор зарядится, ток заряда, открывавший транзистор V1, падает до нуля. Транзисторы закрываются. Лампочка гаснет. В таком состоянии схема будет находится до тех пор, пока конденсатор С1 не разрядится через резисторы R2, R3. Затем этот процесс повторится сначала.

При подключении параллельно С1 проверяемого конденсатора их общая емкость увеличивается и время разряда станет больше. Лампочка начнет мигать реже. Если емкость подключаемого конденсатора мала, то это изменение будет незначительным. А при подключении конденсатора емкостью в 1000 мкФ лампочка будет вспыхивать примерно через двадцать секунд. Если конденсатор пробит или имеет большой ток утечки, то лампочка будет гореть непрерывно.

Транзистор V1 — КТ315 или другой аналогичный структуры n-p-n. Только надо отбирать экземпляры с Jко не более 1 мкА и коэффициентом усиления не менее 50.
Транзистор V2 — МП39 или другой аналогичный структуры p-n-p c коэффициентом усиления не менее 50.

Конденсатор С1 бумажный или керамический любого типа. Резисторы тоже любого типа.

Лампочка Н1 — обычная, от карманного фонаря, напряжением 2,5 В и током 0,15 А. Использовать лампочки с большим током и напряжением нельзя.

НАЛАЖИВАНИЕ ПРИБОРА начинайте с установки максимального значения величины резистора R3, поставив его движок в нижнее (по схеме) положение. Для начала поставьте резистор R1 величиной 680 Ом. Включив питание, проверьте работу мультивибратора. Если он работает, то лампочка должна мигать. В противном случае увеличьте величину резистора R2. Добившись работы мультивибратора, подберите величину R1. Она может быть выбрана в пределах 680 Ом -4,7 кОм. При больших величинах лампочка горит дольше, но мультивибратор работает менее устойчиво. Поэтому надо установить такую величину резистора R1, при которой генератор устойчиво работает и лампочка достаточно ярко светит на максимальной частоте. Эту частоту устанавливают резистором R3. В смонтированном образце она равна примерно 10 Гц.

Мигающая лампочка служит хорошим индикатором включения прибора. Подключение проверяемого конденсатора уменьшает частоту мигания лампочки. Для опытного глаза изменение частоты заметно уже при подключении конденсатора в 0,05 мкФ. Подключение пробитого конденсатора или конденсатора с большой утечкой вызывает непрерывное свечение лампочки. Лампочка довольно долго горит при подключении конденсаторов большой емкости — 100 — 1000 мкФ. Поэтому, чтобы воспользоваться прибором, надо предварительно потренироваться, подключая к прибору заведомо исправные конденсаторы в 5, 10, 20, 50 и более микрофарад. Прибором, несомненно, можно проверять и неэлектролитические конденсаторы.

Читайте также:  Система зажигания бензопилы stihl ms 180

В заключение хотелось бы заметить, что давно не работавшие электролитические конденсаторы с большой утечкой следует на некоторое время подключить к источнику постоянного тока с напряжением, равным рабочему напряжению конденсатора. После непродолжительной работы в таком режиме ток утечки заметно понизится, и конденсатор вновь может быть использован.

Схема № 2 Измеритель ESR электролитических конденсаторов

Илья Липавский. © 2003
НАЗНАЧЕНИЕ

Устройство позволяет измерять ESR электролитических конденсаторов с индикацией измеряемой величины на линейной шкале стрелочного прибора или на индикаторе цифрового мультиметра.

КОНСТРУКЦИЯ

Схема устройства собрана на четырёх ОУ. На ОР 1 собран генератор частотой 120 кГц. Напряжение с этого генератора подаётся на инвертирующий усилитель на ОР 2, в цепь обратной связи которого включается тестируемый конденсатор. Так как величина коэффициента усиления инвертирующего усилителя на ОУ прямо пропорциональна величине сопротивления резистора в цепи ООС, то его выходное напряжение будет прямо пропорционально измеряемой величине. Далее следует нормирующий усилитель ОР 3. Меняя его коэффициент усиления, переключая резистор обратной связи, получаем возможность легко изменять диапазон измерения. Далее, следует линейный вольтметр на ОР 4. Если вместо микроамперметра включить резистор, величиной в несколько килоом, то напряжение на нём можно измерять цифровым мультиметром. Например, на FLUKE есть oчень удобный поддиапазон — 300 мВ.

Рис. 2 Принципиальная схема измерителя ESR электролитических конденсаторов

Схема устройства предоставлена на Рис.2, и имеет два предела измерения 1 Ом и 5 Ом. Но их может быть сколько угодно. Включив вместо резистора R9,например, 9 кОм, получим предел 10 Ом.

Вообще, как мне представляется, применение данного прибора для целей выявления неисправных конденсаторов при ремонтах РЭА ничем не лучше, чем применение устройства для измерения ESR на трансформаторе. Но, когда интересует точное значение ESR, при подборе конденсаторов, например, тогда его применение целесообразно.

Следует учитывать, что наличие даже очень маленькой индуктивности (ферритовой бусинки, например, надетой на провод) вызывает заметное (на пределе 1 Ом — более половины шкалы) отклонение стрелки. Так можно легко различать проволочные и плёночные резисторы, например, если по внешнему виду определить затруднительно.

Следует остановиться на конструкции щупов. Наилучшие результаты показали витые щупы из четырёх проводов, диаметром в изоляции, около одного миллиметра. Два провода свиваются между собой, а потом две косички свиваются между собой. При длине 40 см, вносимая погрешность — около 0.2 Ома. Такой же косичкой из четырёх проводов, только короткой, производится подключение к клеммам на корпусе прибора. В качестве клемм удобно использовать колодки для подключения звуковых колонок.

Номиналы деталей, за исключением номиналов резисторов R7, R8 и R9, определяющих границы диапазонов,не критичны. Питание устройства от 12 дисковых аккумуляторов, ёмкостью 0.28 А-Ч.

НАСТРОЙКА

Настройка производится так. Вставляем в колодку известное сопротивление, например, 3 Ома. Вращая триммер R11 устанавливаем стрелку на 30 (если 50-и микроамперная головка). И всё. Испытания устройства на конденсаторах ёмкостью 820-4700 мкФ производителей SXE, SAMHWA, KELNA, LXY и других, с величиной ESR менее 0.1 Ома, подтвердили его достаточно высокую эффективность.

Всего хорошего, пишите to Elremont © 2005

Отправить ответ

  Подписаться  
Уведомление о
Adblock
detector