Виды транзисторов их свойства и назначение

Прежде чем рассматривать типы транзисторов, следует выяснить, что вообще представляет собой транзистор и для чего используется.

Что такое транзистор

Транзистором называется полупроводниковый триод, представляющий собой компонент, используемый в области радиоэлектроники, изготавливаемый из полупроводниковых материалов. Он имеет три вывода, позволяющие управлять в цепи электрическим током с помощью входного сигнала.

Из-за своих качеств применяется в тех случаях, когда необходимо преобразовать, сгенерировать или усилить электрические сигналы. Название транзистора применяется и для других устройств, имитирующих основное качество транзистора – способность изменять сигнал в двух различных состояниях, при одновременном изменении сигнала управляющего электрода.

Виды и характеристика

Все транзисторы подразделяются на два вида – NPN и PNP. В этих на первый взгляд сложных аббревиатурах, нет ничего особо сложного. Данными буквенными обозначениями определяется порядок наложения специфических слоев. Такими слоями являются pn-переходы в полупроводниковых материалах, использованных для их изготовления. Глядя визуально на любой полупроводник, невозможно определить тип полупроводниковой структуры, расположенной внутри корпуса. Эти данные обозначаются маркировкой, нанесенной на корпус. Тип транзистора необходимо знать заранее, поскольку использование его в схеме может быть самым различным.

Следует помнить о том, что NPN и PNP совершенно разные. Поэтому их нельзя просто так перепутать или заменить между собой. Заменить один на другой возможно при определенных условиях. Основное условие – значительное изменение схемы включения этих транзисторов. Таким образом, для определенных узлов радиотехнических устройств, применяются только свои, конкретные марки, в противном случае, устройство просто выйдет из строя, и не будет работать.

Технологические различия

Помимо типа pn-перехода, все они различаются технологией применяемой для их изготовления.

В связи с этим, можно отметить два видаа транзисторов, различающихся параметрами:

  • Биполярные — отличаются подачей в их базу тока небольшой величины. Этот ток, в свою очередь, служит для управления количеством тока, проходящего между эмиттером и коллектором.
  • Полевые — оборудуются тремя выводами, носящими название затвор, сток и исток. В данном случае, на затвор транзистора воздействует не ток, а напряжение. Эти транзисторы отличаются различной полярностью.

Транзистор, иначе называемый полупроводниковым триодом — электронное устройство, основой которого являются полупроводниковые материалы. Основное назначение прибора — возможность, с помощью изменения слабого тока в управляющей цепи, получать усиленный сигнал на выходе. Полупроводниковый триод — одна из основных составляющих схем множества электронных устройств, от радиоприёмника до компьютера.

Типы транзисторов

Определение «транзистор» тесно связано с этимологией этого слова. Оно образовано от двух английских слов: transfer (переносить) и resistor (сопротивление). Действительно, принцип работы устройства связан с переносом (изменением) сопротивления в электрической цепи.

Существуют два основных класса полупроводниковых триодов:

Каждый класс, в свою очередь, делится на несколько разновидностей.

Биполярные:

  • p-n-p тип (прямая проводимость);
  • n-p-n тип (обратная проводимость).

Оба этих типа триодов могут использоваться в одной электронной схеме. Поэтому, для того чтобы не перепутать, какую именно деталь надо использовать в конкретном месте схемы, изображения p-n-p и n-p-n триодов отличаются друг от друга.

Полевые:

  • униполярные с p-n переходом;
  • МДП-транзисторы с изолированным затвором.

Принцип работы устройства

В электронике применяются полупроводники с электронной (n) или дырочной (p) проводимостью. Эти обозначения говорят о том, что в первом случае в полупроводнике преобладают отрицательно заряженные электроны, во втором — положительно заряженные дырки.

Рассмотрим, как устроен транзистор на примере биполярного полупроводникового триода. Внешне прибор выглядит как небольшая деталь в металлическом или пластиковом корпусе с тремя выводами. Внутри — своеобразный бутерброд из трёх слоёв полупроводника. Если центральный слой p-типа, то окружающие его слои — n-типа. Получается триод n-p-n. Если же центр, именуемый также базой, n-типа, то обкладки — из полупроводника с дырочной проводимостью, а структура устройства — p-n-p. Один из внешних слоёв называется эмиттером, другой коллектором. К каждой из этих трёх частей прибора бывает подведён соответствующий вывод.

Читайте также:  Износ и его виды

Краткое пояснение, как работает транзистор, для «чайников» выглядит так. Возьмём для примера транзистор n-p-n, где эмиттер и коллектор являются слоями с преимущественно электронной проводимостью, а база — с дырочной.

Подключаем эмиттер к отрицательному выводу электрической батареи, а базу и коллектор — к положительному. Начинающему любителю электроники можно представить, что триод состоит из двух диодов, причём диод эмиттер — база включён в прямом направлении, и через него протекает ток, а диод база — коллектор включён в обратном направлении, и ток отсутствует.

Предположим, что мы включили в цепь базы переменный резистор, с помощью которого можем регулировать подаваемое на базу напряжение. Какой эффект мы получим при уменьшении напряжения до нуля? Ток в цепи эмиттер-база перестанет течь. Немного увеличим напряжение. Электроны из n — области эмиттера устремятся к базе, подключённой к плюсу батареи.

Важная деталь — база сделана максимально тонкой. Поэтому масса электронов проходит этот слой насквозь и оказывается в коллекторе под воздействием положительного полюса батареи, к которому притягивается. Таким образом, ток начинает проходить не только между эмиттером и базой, но и между эмиттером и коллектором. При этом ток коллектора значительно больше тока базы.

Ещё одно важное обстоятельство: небольшое изменение базового тока вызывает значительно более сильное изменение коллекторного тока. Таким образом, полупроводниковый триод служит для усиления различных сигналов. Обычно биполярные триоды чаще используются в аналоговой технике.

Полевые транзисторы

Этот тип триода отличается от биполярного не свойствами или функциями, а принципом работы. В полевом триоде ток движется от вывода, называемого истоком, к выводу, именуемому стоком, по полупроводнику одного вида проводимости, например, p. А управление силой этого тока производится с помощью изменения напряжения на третьем выводе — затворе.

Такая структура более точно отвечает требованиям современной цифровой техники, где в основном и применяются полевые триоды. Сегодняшние технологические возможности позволяют разместить на кристалле полупроводника площадью 1−2 квадратных сантиметров несколько миллиардов МДП-элементов с изолированным затвором. Таким образом создаются центральные процессоры персональных компьютеров.

Перспективы развития приборов

Перспективы лежат, в первую очередь, в сфере дальнейшей миниатюризации устройств. Так, американские учёные разрабатывают сегодня так называемый одномолекулярный транзистор. Основным элементом такого устройства является молекула бензола, к которой присоединены три электрода.

Если идея оправдает себя, появится возможность создания сверхмощных вычислительных комплексов. Ведь размер молекулы гораздо меньше размера сегодняшних МДП-триодов на кристалле кремниевого чипа.

Что такое транзистор? Наверняка каждый человек хотя бы раз в жизни слышал это слово. Однако далеко не каждый знаком с его значением, а тем более с устройством и назначением транзистора. Это понятие подробно изучают студенты технических ВУЗов. При этом довольно часто технические знания пригождаются в жизни людям, не имеющим ничего общего с инженерной деятельностью. В этой статье мы рассмотрим в каких областях они применяются.

Принцип работы прибора

Транзистор — полупроводниковый прибор, предназначенный для усиления электрического сигнала. Благодаря особому строению кристаллических решёток и полупроводниковым свойствам, этот прибор способен увеличивать амплитуду протекающего тока.

Читайте также:  Электрическая схема нереверсивного магнитного пускателя

Полупроводники — вещества, которые способны проводить ток, а также препятствовать его прохождению. Самыми яркими их представителями являются кремний и германий. Существует два вида полупроводников:

В полупроводниках электрический ток возникает из-за недостатка или переизбытка свободных электронов. Например, кристаллическая решётка атома состоит из трёх электронов. Однако если ввести в это вещество атом, состоящий из четырёх электронов, один будет лишним. Он является свободным электроном. Соответственно, чем больше таких электронов, тем ближе это вещество по своим свойствам к металлу. А значит, и проводимость тока больше. Такие полупроводники называются электронными.

Теперь поговорим о дырочных. Для их создания в вещество вводятся атомы другого вещества, кристаллическая решётка которого содержит больше атомов. Соответственно, в нашем полупроводнике становится меньше электронов. Образуются вакантные места для электронов. Валентные связи будут разрушаться, так как электроны будут стремиться занять эти вакантные места. Далее, мы будем называть их дырками.

Электроны постоянно стремятся занять дырку и, начиная движение, образуют новую дырку. Таким поведением обладают абсолютно все электроны. В полупроводнике происходит их движение, а значит, начинает проводиться ток. Такие полупроводники называются дырочными.

Таким образом, вводя недостаток или избыток электронов в кремний или германий, мы способствуем их движению. Получается ток. Транзисторы состоят из соединений этих полупроводников по определённому принципу. С их помощью можно управлять протекающими токами и другими параметрами электрических сигналов.

Виды транзисторов

Существует несколько видов транзисторов. Их около четырёх. Однако основные из них это:

Остальные виды собираются из полевых и биполярных. Рассмотрим более подробно каждый вид.

Полевые

Суть этого прибора заключается в управлении параметрами электрического сигнала с помощью электрического поля. Оно появляется при подаче напряжения к какому-либо из выводов:

  1. Затвор нужен для регулирования параметров сигнала, благодаря подаче напряжения на него.
  2. Сток — вывод, через который из канала уходят носители заряда (дырки и электроны).
  3. Исток — вывод, через который в канал приходят электроны и дырки.

Такой транзистор состоит из полупроводника с определённой проводимостью и двух областей, помещённых в него с противоположной проводимостью. При подаче напряжения на затвор между этими двумя областями появляется пространство, через которое протекает ток. Это пространство называется каналом. Ширина этого канала регулируется напряжением, которое мы подаём на затвор. Соответственно, можно увеличивать и уменьшать ширину канала и управлять протекающим током.

Теперь поговорим о приборе с изолированным затвором. Разница в том, что в первом случае этот переход есть всегда, даже когда на затвор не подавалось напряжение. А при его подаче, переход и токопроводящий канал менялись в зависимости от полярности и амплитуды напряжения. Металлический затвор в таких транзисторах изолирован диэлектриком от полупроводниковой области. Их входное сопротивление гораздо больше.

Существует два вида приборов с изолированным затвором:

  • Со встроенным каналом.
  • С индуцированным каналом.

Встроенный канал позволяет протекать электрическому току с определённой амплитудой. При подаче напряжения с определённой амплитудой и полярностью мы можем менять ширину канала и его проводимость. Этот канал встраивается в транзисторы на производственных предприятиях.

Индуцированный канал появляется между двумя областями, о которых мы говорили выше, только при подаче напряжения определённой полярности на затвор. То есть, когда на затвор напряжение не подаётся, ток в нем не протекает.

Все виды полевых транзисторов отличаются друг от друга по следующим параметрам:

  1. Входное сопротивление.
  2. Амплитуда напряжения, которое необходимо подать на затвор.
  3. Полярность.

Каждый из этих видов полевых транзисторов необходим для сборки определённых электрических и логических схем. Так как для реализации двух разных устройств необходимо разные электрические параметры.

Читайте также:  Станок для вязания крючком

Биполярные

Слово «биполярные» означает две полярности. То есть, такие приборы имеют две полярности, благодаря особенностям своего строения. Особенность их строения заключается в том, что они состоят из трёх полупроводниковых областей. Типы проводимости бывают следующими:

  1. Электронная, далее n.
  2. Дырочная, далее p.

Соответственно, можно сделать вывод, что существует два вида биполярных транзисторов:

Разница между ними заключается в том, что для корректной работы необходимо подавать напряжение разной полярности. К каждой из трёх полупроводниковых областей подключено по одному выводу. Всего их три:

  1. База — центральный слой. Он является самым тонким. На выводе базы находится управляющий ток с небольшой амплитудой.
  2. Коллектор — один из крайних слоёв. Он является самым широким. На него подаётся ток с большой амплитудой.
  3. Эмиттер — вывод, на который подаётся ток с коллектора. На его выходе амплитуда тока немного больше, чем на входе.

Существует три схемы подключения биполярных транзисторов:

  1. С общим эмиттером — входной сигнал подаётся на базу, а выходной снимается с коллектора.
  2. С общим коллектором — входной сигнал подаётся на базу, а снимается с эмиттера.
  3. С общей базой — входной сигнал подаётся на эмиттер, а снимается с коллектора.

Благодаря нескольким электронно-дырочным переходам, образующимся в биполярном транзисторе, можно управлять параметрами электрического сигнала. Полярность и амплитуда подаваемого напряжения зависят от типа биполярного транзистора.

Применение транзисторов в жизни

Транзисторы применяются в очень многих технических устройствах. Самые яркие примеры:

  1. Усилительные схемы.
  2. Генераторы сигналов.
  3. Электронные ключи.

Во всех устройствах связи усиление сигнала необходимо. Во-первых, электрические сигналы имеют естественное затухание. Во-вторых, довольно часто бывает, что амплитуды одного из параметров сигнала недостаточно для корректной работы устройства. Информация передаётся с помощью электрических сигналов. Чтобы доставка была гарантированной и качество информации высоким, нам необходимо усиливать сигналы.

Транзисторы способны влиять не только на амплитуду, но и на форму электрического сигнала. В зависимости от требуемой формы генерируемого сигнала в генераторе будет установлен соответствующий тип полупроводникового прибора.

Электронные ключи нужны для управления силой тока в цепи. В состав этих ключей входит множество транзисторов. Электронные ключи являются одним из важнейших элементов схем. На их основе работают компьютеры, телевизоры и другие электрические приборы, без которых в современной жизни не обойтись.

Литература по электронике

Наука, которая изучает транзисторы и другие приборы, называется электроника. Целый ее раздел посвящён полупроводниковым приборам. Если вам интересно получить больше информации о работе транзисторов, можно почитать следующие книги по этой тематике:

  1. Цифровая схемотехника и архитектура компьютера — Дэвид М.
  2. Операционные системы. Разработка и реализация — Эндрю Т.
  3. Силовая электроника для любителей и профессионалов — Б. Ю. Семенов .

В этих книгах описываются различные средства программируемой электроники. Конечно же, в основе всех программируемых схем, лежат транзисторы. Благодаря этим книгам вы не только получите новые знания о транзисторах, но и навыки, которые, возможно, принесут вам доход.

Теперь вы знаете, как работают транзисторы, и где они применяются в жизни. Если вам интересна эта тема, продолжайте её изучать, ведь прогресс не стоит на месте, и все технические устройства постоянно совершенствуются. В этом деле очень важно идти в ногу со временем. Успехов вам!

Отправить ответ

  Подписаться  
Уведомление о
Adblock
detector