Включение полевого транзистора в ключевом режиме

    Из-за того, что в открытом состоянии транзистор имеет очень малое сопротивление сток-исток, падение напряжения на нём мало. Именно поэтому имеет значение в какое "плечо" включать нагрузку. Например, для открытия полевого транзистора N-типа на затвор нужно подать положительное напряжение относительно истока — если при этом включить нагрузку в цепь истока, то напряжение на истоке будет равно:

Здесь Rотк. это сопротивление открытого транзистора. Так как данное сопротивление мало (десятки-сотни миллиом), если притянуть затвор к питанию, разница напряжений между затвором и истоком будет недостаточна для полного открытия транзистора даже при большом токе. Данное ограничение можно обойти используя разные источники для питания нагрузки и для управления затвором, но нужно чётко понимать как это работает.

  • Одна из особенностей подключения MOSFET транзистора к цифровым схемам — это необходимость подачи достаточного напряжения затвор-исток. В даташитах на транзистор пороговое напряжение затвор-исток (gate-source), при котором он начинает открываться называется gate threshold voltage (VGS). для полного открытия таким транзисторам надо подать на затвор довольно большое напряжение. Обычно это около 10 вольт, а микроконтроллер чаще всего может выдать максимум 5В. Есть несколько вариантов решения данной проблемы:
    • На биполярных транзисторах соорудить цепочку, подающую питание с высоковольтной цепи на затвор.
    • Применить специальную микросхему-драйвер, которая сама сформирует нужный управляющий сигнал и выровняет уровни между контроллером и транзистором. Типичные примеры драйверов это, например, IR2117. Надо только не забывать, что есть драйверы как верхнего так и нижнего плеча (или совмещенные, полумостовые). Выбор драйвера зависит от схемы включения нагрузки и коммутирующего транзистора. Для того, чтобы открыть N-канальный транзистор в верхнем плече, ему на затвор нужно подать напряжение выше напряжения стока, а это, по сути дела, выше напряжения питания. Для этого в драйвере верхнего плеча используется накачка напряжения. Этим и отличается драйвер нижнего плеча от драйвера верхнего плеча.
    • Также возможно просто использовать транзистор с малым отпирающим напряжением (т.н. logic level транзисторы). Например из серии IRL630A или им подобные. У них открывающие напряжения привязаны к логическим уровням. У них правда есть один недостаток — их порой сложно достать. Если обычные мощные полевики уже не являются проблемой, то управляемые логическим уровнем бывают далеко не всегда.
    • Никогда не оставляйте затвор "болтаться" в воздухе — так как транзистор управляется "полем", на затворе могут наводиться помехи от окружающих электро-магнитных полей, поэтому желательно всегда притягивать его через большое сопротивление либо к питанию, либо к земле, в зависимости от схемы. Сказанное верно, даже если вы используете микроконтроллер для управления транзистором — это поможет избежать неопределённых состояний, когда управляющее устройство, например, перезагружается.

      Наличие емкости на затворе создаёт бросок "зарядного" тока при открытии, поэтому для его ограничения рекомендуется ставить небольшой резистор в цепь затвора. Ограничив ток резистором вы также увеличите время открытия транзистора.

      Для шунтирования импульса тока, образующегося при отключении индуктивной нагрузки, добавляют быстрый защитный диод (TVS-диод), включённый параллельно истоку-стоку. Если имеется однонаправленный супрессор используется обратное включение, хотя допустимо также использовать двунаправленные TVS-диоды. Также, если транзисторы работают в мостовой или полумостовой схеме на высокой частоте (индукционные нагреватели, импульсные источники питания и т.п.), то в цепь стока встречно включается диод Шоттки для блокирования паразитного диода. Паразитный диод имеет большое время запирания, что может привести к сквозным токам и выходу транзисторов из строя.

      Если вы планируете использовать полевой транзистор в качестве быстрого высокочастотного ключа иили для коммутации мощной или индуктивной нагрузки, необходимо использовать т.н. снабберные цепи — часть схемы, замыкающая токи переходных процессов на себя, уменьшая паразитный нагрев транзистора. Снаббер также защищает от самооткрывания транзистора при превышении скорости нарастания напряжения на выводах сток-исток.

      Применение полевого транзистора в качестве ключа. (10+)

      Полевой транзистор — силовой ключ

      Материал является пояснением и дополнением к статье:
      Полевой транзистор
      Полевой транзистор. Определение. Обозначение. Классификация

      Как я уже писал полевой транзистор, как усилительный элемент никуда не годится. Но есть область, для которой полевые транзисторы подходят практически идеально. Это силовые устройства, где необходимо замыкать и размыкать силовые цепи постоянного тока. Это импульсные источники питания, регуляторы мощности потребителей постоянного тока, автоматика.

      Полевые транзисторы имеют высокое входное сопротивление постоянному току, что является неоспоримым преимуществом при относительно редком переключении. Расход энергии на управление полевиком в этом случае минимален. Если переключаться надо часто, то в дело вступают емкости затвор — исток и затвор — сток. На их зарядку нужно тратить энергию. Так что по мере роста частоты переключений расход энергии растет, и у полевого транзистора появляются конкуренты, например, биполярные. Но есть еще одно ключевое преимущество — отрицательный температурный коэффициент при большом токе нагрузки. Этот эффект проявляется в том, что по мере нагрева при большом токе стока сопротивление полевого транзистора нарастает. С одной стороны это позволяет соединять полевые транзисторы параллельно без всяких проблем. Токи в них быстро выравниваются самостоятельно, без всякого нашего участия. С другой стороны цельный мощный полевой транзистор можно представить, как соединенные параллельно маломощные (такие полосочки токопроводящего канала полевика). Сила тока в этих полосочках при прогреве выравнивается, так что полевой транзистор проводит ток по всему сечению канала равномерно. Это обуславливает способность полевых транзисторов работать при больших токах. Например, биполярный транзистор имеет положительный температурный коэффициент. Если в какой-то части кристалла появляется большая проводимость, чем вокруг, то это место прогревается сильнее, туда устремляется все больший ток. Итак до прогорания.

      Вашему вниманию подборка материалов:

      Практика проектирования электронных схем Искусство разработки устройств. Элементная база. Типовые схемы. Примеры готовых устройств. Подробные описания. Онлайн расчет. Возможность задать вопрос авторам

      Управляющее напряжение мощного ключа на полевом транзисторе

      Чтобы минимизировать потери силового ключа на электропроводимость, необходимо, чтобы падение напряжения на открытом ключе было минимальным. Для этого нужно правильно выбрать открывающее напряжение. Тут есть некоторая путаница, которая нередко является причиной ошибок. Нам необходим режим, когда падение напряжения на силовом ключе зависит только от внешних причин (силы тока через него), а не от напряжения на затворе. Похожий режим у биполярного транзистора (когда ток базы столь велик, что падение напряжения на транзисторе уже не зависит от него), называется режимом насыщения. Но если Вы посмотрите описание работы полевого транзистора, такой режим будет соответствовать линейному участку, а вовсе не участку насыщения.

      На этом участке сопротивление полевого транзистора (fet) обратно пропорционально управляющему напряжению. Так что теоретически, чем больше управляющее напряжение, тем меньше сопротивление, а значит потери. Однако, есть предельно допустимое напряжение затвор — исток, которое никак нельзя превышать во избежание пробоя. Так что обычно управляющее напряжение силового ключа выбирается вблизи предельно допустимого, но с запасом на скачки вследствие переходных процессов. Имеет смысл выбирать управляющее напряжение 3 / 4 от максимально допустимого.

      Потери на проводимость полевого транзисторного ключа

      Оценим потери на силовом ключе в открытом состоянии (потери на проводимость). Все эти потери рассеиваются силовым ключом в виде тепловой мощности. В справочнике по мощному полевому транзистору Вы найдете сопротивление сток — исток в открытом состоянии (RDS(ON)). В комментарии к этой величине приводится режим измерения, а именно управляющее напряжение и ток стока. Мы всегда будем выбирать управляющее напряжение выше или равное приведенному в режиме измерения. Так что потери можно оценить сверху по формуле:

      [Потери на проводимость, Вт] = [Время в открытом состоянии, с] / ([Время в открытом состоянии, с] + [Время в закрытом состоянии, с]) * [Сопротивление сток — исток в открытом состоянии, Ом] * [Сила тока в открытом состоянии, А] ^ 2

      Обратите внимание, в формуле используется сила тока в открытом состоянии, а не средняя сила тока. Так как зависимость мощности от силы тока квадратичная, то простое усреднение неприменимо. Полученная величина в сумме с потерями на переключение не должна превышать максимально допустимую рассеиваемую мощность полевого транзистора с учетом системы его охлаждения. В справочниках приводится максимальная мощность при условии идеального охлаждения. Чтобы точно оценить достаточность мощности силового транзистора, нужно рассчитать потери на переключение. Об этом будет отдельная статья. Подпишитесь на новости, чтобы не пропустить.

      Кроме того, нам важно знать максимально допустимый импульсный ток и максимально допустимую периодически выделяемую энергию. Действительно, если у Вас транзистор открывается на очень короткое время, то средняя рассеиваемая мощность будет невелика, но импульсный ток может превысить допустимые значения. Если время в открытом состоянии среднее, то и мощность и максимально допустимый импульсный ток могут быть в норме, но может зашкалить импульсно выделенная энергия.

      [Выделенная энергия, Дж] = [Время в открытом состоянии, с] * [Сопротивление сток — исток в открытом состоянии, Ом] * [Сила тока в открытом состоянии, А] ^ 2

      Вообще эти расчеты довольно замысловатые. Я обычно, если нет каких-то особых требований по габаритам устройства и применяемым элементам, применяю простое соображение. Средний ток не должен превышать максимально допустимый постоянный ток в открытом состоянии, а максимально возможный импульсный ток не должен превышать удвоенную эту величину.

      К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости, чтобы быть в курсе.

      Я собрал уже вторую схему Алмаг 1. При включении выходные ирф640 мгновенно сильно нагреваются под нагрузкой катушек магнитов. Без катушек нагрева нет, а в телефоне поставленном вместо магнита слышен низкочастотный треск работающего генератора. В деталях и монтаже брака не обнаружил. Пожалуйста объясните в чем может быть причина и как устранить устранить нагрев. Первый вариан Читать ответ.

      Плавная регулировка, изменение яркости свечения светодиодов. Регулятор.
      Плавное управление яркостью свечения светодиодов. Схема устройства с питанием ка.

      Зарядное устройство. Импульсный автомобильный зарядник. Зарядка аккуму.
      Схема импульсного зарядного устройства. Расчет на разные напряжения и токи.

      Бесперебойник своими руками. ИБП, UPS сделать самому. Синус, синусоида.
      Как сделать бесперебойник самому? Чисто синусоидальное напряжение на выходе, при.

      Пушпульный импульсный преобразователь напряжения, источник питания. Вы.
      Как выбрать частоту работы контроллера и скважность для пуш-пульного преобразова.

      Оптроны, оптопары тиристорные, динисторные. MOC3061, MOC3062, MOC3063.
      Описание и параметры MOC3061, MOC3062, MOC3063. Применение в тиристорных схемах .

      Обратноходовый импульсный преобразователь напряжения, источник питания.
      Как сконструировать обратноходовый импульсный преобразователь. Как выбрать часто.

      Анализируя возможность использования полевых транзисторов для усиления электрических сигналов мы ограничивались только одним частным случаем подачи на электроды транзистора определенных напряжений и не рассматривали некоторые достаточно важные физические процессы в полупроводниках. Но помимо уже описанной ситуации возможны и другие, приводящие, например, к протеканию в канале тока не от истока к стоку, а наоборот — от стока к истоку и т.п.

      В общем случае для полевого транзистора, так же как и для биполярного, возможны различные устойчивые состояния (режимы работы). Они отличаются друг от друга тем, в каком состоянии находится канал, соединяющий исток и сток транзистора, а также направлением тока, протекающего в канале. В полевых транзисторах дополнительно принято классифицировать также режим воздействия затвора на канал (стимулирует или подавляет протекание тока в нем).

      Ниже при описании режимов работы полевых транзисторов мы применим ту же терминологию, какая используется для биполярных транзисторов. Однако следует понимать, что в полевых транзисторах физические процессы протекают иначе и зачастую нельзя однозначно утверждать, что транзистор находится в таком-то режиме без некоторых уточнений. Например, в нашей транскрипции активный режим и режим насыщения могут существовать одновременно независимо друг от друга.

      Активный режим — соответствует случаям, рассмотренным при анализе усилительных свойств полевых транзисторов. Именно в активном режиме транзистор наилучшим образом проявляет свои усилительные свойства. Часто такой режим называюют основным, усилительным или нормальным (на усилительные свойства полевого транзистора также оказывает влияние состояние канала, а именно находится ли он в режиме насыщения — см. ниже). При рассмотрении полевых транзисторов мы практически всегда (за исключением ключевых схем) имеем дело с активным режимом, но здесь имеется одна тонкость, о которой также часто говорят как о режиме работы транзистора (или как о режиме работы затвора). В различных видах полевых транзисторов и при различных внешних напряжениях затвор может оказывать два вида воздействий на канал: в первом случае (например, в полевых транзисторах с управляющим (p)-(n)-переходом при напряжениях на электродах, соответствующих рис. 2-1.5) он препятствует протеканию тока через канал, уменьшая число носителей зарядов, проходящих через него (такой режим называют режимом обеднения канала), во втором случае (например, в МДП-транзисторах с индуцированным каналом, включенных в соответствии с рис. 2-1.7) затвор, наоборот, стимулирует протекание тока через канал, увеличивая число носителей зарядов в потоке (режим обогащения канала). Часто просто говорят о режиме обеднения и режиме обогащения. Заметим, что МДП-транзисторы с индуцированным каналом могут находиться в активном режиме только в случае режима обогащения канала, а для МДП-транзисторов со встроенным каналом это может быть и режим обогащения, и режим обеднения. В полевых транзисторах с управляющим (p)-(n)-переходом попытка приложить прямое смещение на этот переход вызывает его открытие и протекание существенного тока в цепи затвора. Реальные процессы в транзисторе в этом случае сильно зависят от его конструкции, практически никогда не документируются и трудно предсказуемы. Поэтому говорить о режиме обогащения для полевых транзисторов с управляющим переходом не принято да и просто бессмысленно.

      Инверсный режим — по процессам в канале противоположен активному режиму, т.е. поток носителей зарядов в канале протекает не от истока к стоку, а наоборот — от стока к истоку. Для инверсного режима требуется только изменение полярности напряжения на канале, полярность напряжения на затворе остается неизменной. В таком режиме транзистор также может использоваться для усиления. Обычно из-за конструктивных различий между областями стока и истока усилительные свойства транзистора в инверсном режиме проявляются хуже, чем в режиме активном. Впрочем, в некоторых видах МДП-транзисторов конструктивная ассиметрия минимальна, что приводит к симметричности выходных статических характеристик такого транзистора относительно изменения полярности напряжения сток—исток. Данный режим практически никогда не используется в усилительных схемах, но для аналоговых переключателей на полевых транзисторах он оказывается полезен. Однако здесь есть одна ловушка, в которую довольно легко попасть начинающему. Дело в том, что в большинстве МДП-транзисторов (особенно в мощных) производители соединяют подложку с истоком внутри корпуса прибора, что фактически означает, что в этих транзисторах между истоком и стоком имеется диод который не позволяет подавать на переход исток—сток инверсное напряжение, превышающее прямое падение напряжения на этом диоде, т.е. инверсный режим в таком транзисторе попросту невозможен. Вообще, в случае полевых транзисторов о режиме работы вспоминают гораздо реже, чем для биполярных. Дело здесь в том, что каждый конкретный тип полевого транзистора имеет конструкцию строго ориентированную на выполнение какой-то конкретной функции (усиление слабых сигналов, ключ и т.п.), все документируемые параметры транзистора в этом случае характеризуют его работу именно в основном режиме при выполнении предназначенной функции. Поэтому имеет смысл говорить просто о нормальном режиме работы, когда все соответствует документации, или о ненормальном, который в документации просто не предусмотрен (да и вряд ли кому-то понадобиться использовать его в схемах).

      Режим насыщения — характеризует состояние не всего транзистора в целом, как это было для биполярных приборов, а только токопроводящего канала между истоком и стоком. Данный режим соответствует насыщению канала основными носителями зарядов. Такое явление как насыщение является одним из важнейших физических свойств полупроводников. Оказывается, что при приложении внешнего напряжения к полупроводниковому каналу, ток в нем линейно зависит от этого напряжения лишь до определенного предела (напряжение насыщения), а по достижении этого предела стабилизируется и остается практически неизменным вплоть до пробоя структуры. В приложении к полевым транзисторам это означает, что при превышении напряжением сток—исток некоторого порогового уровня оно перестает влиять на ток в цепи. Если для биполярных транзисторов режим насыщения означал полную потерю усилительных свойств, то для полевых это не так. Здесь наоборот, насыщение канала приводит к повышению коэффициента усиления и уменьшению нелинейных искажений. До достижения напряжением сток—исток уровня насыщения ток через канал линейно увеличивается с ростом напряжения (т.е. ведет себя так же, как и в обычном резисторе). Автору неизвестно какого-либо устоявшегося названия для такого состояния полевого транзистора (когда ток через канал идет, но канал ненасыщен), будем называть его режимом ненасыщенного канала (он находит применение в аналоговых ключах на полевых транзисторах). Режим насыщения канала обычно является нормальным при включении полевого транзистора в усилительные цепи, поэтому в дальнейшем при рассмотрении работы транзисторов в схемах мы не будем делать особого акцента на этом, подразумевая, что между стоком и истоком транзистора присутствует напряжение, достаточное для насыщения канала.

      Режим отсечки — режим, в котором ток через канал полевого транзистора не протекает. Переход полевого транзистора в режим отсечки происходит по достижении напряжением на затворе определенного порога (напряжение отсечки). В полевых транзисторах с управляющим (p)-(n)-переходом это имеет место при постепенном увеличении обратного смещения на перереходе, а в МДП-транзисторах со встроенным каналом при увеличении разности потенциалов между истоком и затвором при условии работы в режиме обеднения канала. В МДП-транзисторах с индуцированным каналом режим отсечки имеет место при нулевой разности напряжений между истоком и затвором, а по достижении напряжения отсечки (или порогового напряжения) канал открывается. Поскольку выходной ток транзистора в режиме отсечки практически равен нулю, он используется в ключевых схемах и соответвует размыканию транзисторного ключа.

      Помимо режима работы для эксплуатации полевых транзисторов имеет значение то, каким образом транзистор включен в каскад усиления (как поданы питающие напряжения на его электроды, в какие цепи включены нагрузка и источник сигнала). Так же как и для биполярных транзисторов, здесь различают три основных способа (рис. 2-1.8): схема с общим истоком (ОИ), схема с общим стоком (ОС) и схема с общим затвором (ОЗ).

      Рис. 2-1.8. Схемы включения полевых транзисторов (направления токов соответствуют активному режиму работы)

      Для полевых транзисторов полностью сохраняется понятие класса усиления в том же виде, в каком оно описано в подразделе Классы усиления для биполярных транзисторов. Отличие лишь в том, что критерием нахождения транзистора в режиме усиления здесь служит наличие потока зарядов через канал от истока к стоку.

      Отправить ответ

        Подписаться  
      Уведомление о
      Adblock
      detector