Доклад на тему неорганические полимеры

НЕОРГАНИЧЕСКИЕ ПОЛИМЕРЫ. Имеют неорг. главные цепи и не содержат орг. боковых радикалов. Главные цепи построены из ковалентных или ионно-ковалентных связей; в нек-рых неорганических полимерах цепочка ионно-ковалентных связей может прерываться единичными сочленениями координац. характера. Структурная классификация неорганических полимеров осуществляется по тем же признакам, что и орг. или элементоорг. полиме-ров (см. Высокомолекулярные соединения). Среди природных неорганических полимеров наиб. распространены сетчатые, входящие в состав большинства минералов земной коры. Многие из них образуют кристаллы типа алмаза или кварца. К образованию линейных неорганических полимеров способны элементы верх. рядов III-VI гр. периодич. системы. Внутри групп с увеличением номера ряда способность элементов к образованию гомо- или гете-роатомных цепей резко убывает. Галогены, как и в орг. полимерах, играют роль агентов обрыва цепи, хотя всевозможные их комбинации с др. элементами могут составлять боковые группы. Элементы VIII гр. могут входить в главную цепь, образуя координац. неорганические полимеры. Последние, в принципе, отличны от орг. координационных полимеров, где система координац. связей образует лишь вторичную структуру. Мн. оксиды или соли металлов переменной валентности по макроскопич. св-вам похожи на сетчатые неорганические полимеры.

Длинные гомоатомные цепи (со степенью полимеризации п >= 100) образуют лишь углерод и элементы VI гр.-S, Se и Те. Эти цепи состоят только из основных атомов и не содержат боковых групп, но электронные структуры углеродных цепей и цепей S, Se и Те различны. Линейные полимеры углерода — кумулены =С=С=С=С= . и кар-бин —С = С—С = С—. (см. Углерод); кроме того, углерод образует двухмерные и трехмерные ковалентные кристаллы-соотв. графит и алмаз. Сера, селен и теллур образуют атомные цепочки с простыми связями и очень высокими п. Их полимеризация имеет характер фазового перехода, причем температурная область стабильности полимера имеет размазанную нижнюю и хорошо выраженную верхнюю границы. Ниже и выше этих границ устойчивы соотв. циклич. октамеры и двухатомные молекулы.

Др. элементы, даже ближайшие соседи углерода по псриодич. системе-В и Si, уже неспособны к образованию гомоатомных цепей или циклич. олигомеров с п >= 20 (безотносительно к наличию или отсутствию боковых групп). Это обусловлено тем, что лишь атомы углерода способны образовывать друг с другом чисто ковалентные связи. По этой причине более распространены бинарные гетероцепные неорганические полимеры типа [—М—L—] n (см. табл.), где атомы М и L образуют между собой ионно-ковалентные связи. В принципе, гетероцепные линейные неорганические полимеры не обязательно должны быть бинарными: регулярно повторяющийся участок цепи м. б. образован и более сложными комбинациями атомов. Включение в главную цепь атомов металлов дестабилизирует линейную структуру и резко снижает и.

КОМБИНАЦИИ ЭЛЕМЕНТОВ, ОБРАЗУЮЩИЕ БИНАРНЫЕ ГЕТЕРОЦЕПНЫЕ НЕОРГАНИЧЕСКИЕ ПОЛИМЕРЫ ТИПА [—М—L—] n (ОБОЗНАЧЕНЫ ЗНАКОМ +)

* Образует также неорг. полимеры состава [—В—Р—] n .

Особенности электронной структуры главных цепей гомо-цепных неорганических полимеров делают их весьма уязвимыми при атаке нуклеоф. или электроф. агентами. Уже по одной этой причине относительно стабильнее цепи, содержащие в качестве компонента L кислород или др. атом, соседний с ним по периодич. системе. Но и эти цепи нуждаются обычно в стабилизации, к-рая в прир. неорганических полимерах связана с образованием сетчатых структур и с очень сильным межмол. взаимод. боковых групп (включая образование солевых мостиков), в результате к-рого большинство даже линейных неорганических полимеров не-растворимы и по макроскопич. св-вам сходны с сетчатыми неорганическими полимерами.

Читайте также:  Паяльник для полиэтиленовой пленки

Практич. интерес представляют линейные неорганические полимеры, к-рые в наиб. степени подобны органическим — могут существовать в тех же фазовых, агрегатных или релаксационных состояниях, образовывать аналогичные надмол. структуры и т.п. Такие неорганические полимеры могут быть термостойкими каучуками, стеклами, волокнообразующими и т.п., а также проявлять ряд св-в, уже не присущих орг. полимерам. К ним относятся полифосфазены, полимерные оксиды серы (с разными боковыми группами), фосфаты, силикаты. Нек-рые комбинации М и L образуют цепи, не имеющие аналогов среди орг. полимеров, напр. полупроводники с широкой зоной проводимости и сверхпроводники. Широкой зоной проводимости обладает графит, имеющий хорошо развитую плос кую или пространств. структуру. Обычным сверхпроводником при т-ре вблизи 0 К является полимер [—SN—] х ; при повышенных т-рах он утрачивает сверхпроводимость, но сохраняет полупроводниковые св-ва. Высокотемпературные сверхпроводящие неорганические полимеры должны обладать структурой керамик, т. е. обязательно содержать в своем составе металлы (в боковых группах) и кислород.

Переработка неорганических полимеров в стекла, волокна, ситаллы, керамику и т. п. требует плавления, а оно, как правило, сопровождается обратимой деполимеризацией. Поэтому используют обычно модифицирующие добавки, позволяющие стабилизировать в расплавах умеренно разветвленные структуры.

Лит.: Энциклопедия полимеров, т. 2, М., 1974, с. 363-71; Бартенев Г. М., Сверхпрочные и высокопрочные неорганические стекла, М., 1974; Кор-шак В. В., Козырева Н. М., "Успехи химии", 1979, т. 48, в. 1, с. 5-29; Inorganic polymers, в кн.: Encyclopedia of polymer science and technology, v. 7, N. Y.-L.-Sydney, 1967, p. 664-91. С.Я. Френкель.

Практический интерес представляют линейные неорганические полимеры, которые в наиб. степени подобны органическим — могут существовать в тех же фазовых, агрегатных или релаксационных состояниях, образовывать аналогичные надмол. структуры и т.п. Такие неорганические полимеры могут быть термостойкими каучуками, стеклами, волокнообразующими и т.п., а также проявлять ряд св-в, уже не присущих орг. полимерам. К ним относятся полифосфазены, полимерные оксиды серы (с разными боковыми группами), фосфаты, силикаты.

Переработка неорганических полимеров в стекла, волокна, ситаллы, керамику и т. п. требует плавления, а оно, как правило, сопровождается обратимойдеполимеризацией. Поэтому используют обычно модифицирующие добавки, позволяющие стабилизировать в расплавах умеренно разветвленные структуры.

Силиконы

Вы уже раньше встречали неорганические полимеры; если не на этих страницах, то по крайней мере, в повседневной жизни вы, вероятно, уже видели где-нибудь силиконовый полимер. Силиконы являются одним из наиболее часто встречающихся неорганических полимеров. Они выглядят вот так:

На самом деле их следует называть полисилоксанами. Связь между атомами кремния и кислорода очень прочная, но очень гибкая. Поэтому силиконы могут выдерживать высокие температуры, не разлагаясь при этом, но у них очень низкие температуры стеклования. Вам, наверное, прежде где-нибудь уже приходилось встречать резину или замазку, сделанную из силиконов.

Полисиланы

Было потрачено немало времени для того, чтобы это произошло, но атомы кремния все-таки были выстроены в длинные полимерные цепочки. Уже где-то в 20-е или 30-е годы двадцатого века химики начали догадываться, что органические полимеры сделаны из длинных углеродных цепочек, но серьезные исследования полисиланов не были проведены вплоть до конца семидесятых годов.

Ранее, в 1949 году, в то самое время, когда писатель Курт Воннегут работал в отделе компании Дженерал Электрик по связям с общественностью, К. А. Буркхард (C.A. Burkhard) работал в отделе исследования и развития той же фирмы. Он изобрел полисилан под названием полидиметилсилан, но это вещество ни на что не годилось. Оно выглядело вот так:

Читайте также:  Подключение индукционного счетчика однофазного

Оно образовывало кристаллы, которые были столь прочными, что ничто не могло растворить их. Буркхард пытался нагреть их, но они не плавились при температурах ниже 250 o C, При более высокой температуре они разлагались, так и не расплавивишись. Это делало полидиметилсилан довольно бесполезным. Получено это вещество было при реакции металлического натрия с дихлордиметилсиланом вот так:

Это важно, поскольку в семидесятых годах двадцатого века некоторые ученые начали понимать, как делать маленькие молекулы из атомов кремния. Так, сами того не ожидая, они сделали нечто очень похожее на то, что ранее сделал Буркхард. Они заставили металлический натрий взаимодействовать с дихлордиметилсиланом, но они также добавили к этой смеси некоторое количество дихлорметилфенилсилана. И угадайте, что произошло? Я дам вам подсказку: они не получили нужные им структуры. То, что у них вышло, было вот таким сополимером:

Возможно, более понятно станет, если нарисовать этот сополимер вот таким образом:

Видите ли, эти фенильные группы начинают мешаться, когда полимер пытается кристаллизоваться, поэтому такому веществу в меньшей степени присущи кристаллические свойства, чем полидиметилсилану. Это значит, что оно растворимо и его можно обрабатывать, преобразовывать и изучать.

Ну, и на что же эти вещества годятся? Полисиланы интересны, поскольку они могут проводить электрический ток. Разумеется, не так хорошо, как медь, но гораздо лучше, чем вы могли бы ожидать от полимера, и это достойно исследования. Они также весьма термостойки, их можно нагревать почти до 300 oC. Но если вы нагреете их до гораздо более высоких температур, то вы можете получить из них карбид кремния, который является полезным абразивным материалом.

Полимеры — высокомолекулярные (более 10000 дальтон) соединения, состоящие из повторяющихся низкомолекулярных структурных единиц (мономеров). Количество этих звеньев называют степенью полимеризации. Более короткие молекулы (с низкой степенью полимеризации), построенные таким же образом, называются олигомерами.

В двадцатых годах Штаудингер (нобелевский лауреат по химии 1935 года) доказал, что полимеры представляют собой качественно новый объект. Он же придумал термин «макромолекула», предложил идею их цепного строения, предположил существование разветвлённых и сетчатых структур. Полимеры стали предметом изучения отдельной науки в середине XX века. Вторая мировая война и необходимость найти дешёвую замену природному каучуку весьма этому способствовали.

Полимеры получаются в реакциях

  • полимеризации, в которой соединяются мономеры, содержащие непредельную связь. Так получают полиэтилен, поливинилхлорид.
  • поликонденсации, если структурные звенья имеют функциональные группы, например, полисахариды.

Невозможно точно определить молекулярную массу такого вещества. Образование макромолекулы может оборваться на любом звене, поэтому вместо молекулярной массы используют её среднее значение.

Полимеры классифицируют по разным признакам.

  1. По составу полимеры могут быть:
  • органические, построенные связями –С—С—;
  • элементоорганические, в основной цепи которых кроме углерода присутствует другой элемент (кремний, фосфор, титан, алюминий и другие);
  • неорганическими, например, асбест, кварц, пластическая сера. Земная кора в основном сложена породами, молекулярная структура которых представляет собой трёхмерный (сетчатый) полимер.
  1. По происхождению
  • природные; жизнь основана на биополимерах, к которым относятся белки, полисахариды и нуклеиновые кислоты.
  • искусственные, получаемые модификацией биологических молекул, главным образом, целлюлозы;
  • синтетические.
  1. В состав молекулы может входить
  • один тип мономера (в гомополимерах) или
  • два и больше (в гетерополимерах).
  1. Полимерная цепь бывает:
  • одномерной в линейных;
  • двумерной в разветвлённых (к ним относится крахмал);
  • трёхмерной в пространственных полимерах (резина).
  1. Степень упорядоченности цепочки может быть разной, поэтому различают:
  • стереорегулярные полимеры, звенья которых имеют одинаковую пространственную конфигурацию, либо разную, но входят в строго повторяющемся порядке (изопреновый и дивиниловый каучук);
  • нестереорегулярные, если чередование стереоизомеров произвольный.
Читайте также:  Делаем передний адаптер для мотоблока

Кроме того, полимеры классифицируют по многим другим признакам.

В термопластах макромолекулы связаны друг с другом силами Ван-дер-Ваальса и при нагреве приобретают высокую пластичность, за что они получили своё название. Эти полимеры гибкие, вязкие и образуют плёнки и волокна. Остывая, термопласт сохраняет форму, поэтому литьё, прессование и штамповка из него требует меньших затрат, чем металлообработка.

В реактопластах при обработке появляются новые химические связи. Изменения необратимы, поэтому получается довольно твёрдый термостойкий материал.

Область применения полимеров необъятна: машиностроение, медицина, строительство, электротехника, текстильная промышленность и т.д.

Полимеры пронизывают нашу жизнь во всех её аспектах – технологическом, цивилизационном, биологическом. Можно сказать, что это самый важный для нас класс веществ.

Вариант №2

Высокомолекулярные соединения — это и есть полимеры. Они представлены элементами с повышенной молекулярной массой. Там атомы формируют не только линейные цепи, разветвленные, но и особые трехмерные структуры. Вот такие ВМС включают в себя большое количество органических формирований. За такие соединения принято считать белки, крахмал, целлюлозу, а также каучук и нуклеиновые кислоты. Эти полимеры можно получить во время полимеризации, химических превращений и поликонденсации простейших соединений элементов, сформированных при помощи природы.

ВМС разделяются по строению на разветвленные и пространственные конструкции. При помощи лучей солнца, радиации, процесса вулканизации линейные и разветвленные цепи появилась возможность преобразовать в трехмерные.

Как стало известно, наименьшие частицы целлюлозы по всей длине молекул контактируют друг с другом, этот процесс гарантирует надежность целлюлозных волокон. Однако разветвленные молекулы крахмала способны взаимодействовать только определенными участками, это не позволяет формировать крепкие волокна. Лишь синтетические полимеры, у которых линейные молекулы растянулись вдоль оси растяжения, создают высокопрочные волокна. Трехмерные структуры способны лишь на короткий промежуток времени изменять свою форму во время растягивания если присутствует редкая сетка(как резина). А густая пространственная сетка позволяет трехмерным структурам становиться плотными или же хрупкими, это зависит от ее устройства.

Высокомолекулярные соединения разделяют на несколько групп: гомоцепные(одинаковые атомы являются основой цепи), гетероцепные(цепь состоит из различных элементов).Эти группы также разделяются на классы согласно критериям науки.

Однако полимерные материалы разделяются на три главные группы: каучуки, пластические массы, химические волокна. Эти элементы часто используются для удовлетворения различных потребностей во многих промышленных сферах, медицине, культуре и многом другом.

11 класс, 9 класс по химии

Полимеры

Популярные доклады

Нижний Тагил находится на 2-ом месте по численности населения среди населённых пунктов Свердловской области. С мансийского языка «тагил» переводится как «много воды». Тагильский завод был основан в 1722 году,

Каштан относится к многолетним растениям, к семейству Буковые. Это декоративное цветущее дерево. Каштаны имеют красивую раскидистую крону, их используют для украшения скверов, парков и приусадебных участков.

Отряд Покрытосеменные объединяет высшие растения, семена которых созревают внутри плода (а не шишки, как у голосеменных). Растений таких на планете абсолютное большинство: ученые выделяют около 250 тысяч видов. Это наиболее многочисленный

Отправить ответ

  Подписаться  
Уведомление о
Adblock
detector