Расход кислорода при резке металла на тонну

Рассмотрим три способа термической резки металла: газокислородная, плазменная и лазерная как наиболее распространенные.
Кислородно-разделительная резка применяется для раскроя сортового и листового углеродистого и низколегированного метал-лопроката, обрезки прибылей стального литья, обработки кромок под сварку и др. Не применяется для резки нержавеющих и высоколегированных сталей, чугуна и цветных металлов.
Плазменно-дуговая резка применяется для раскроя проката как низкоуглеродистых, так и высоколегированных сталей, а также алюминия, меди и их сплавов.
Лазерная резка значительно расширяет область применения термической резки и является эффективным способом резки тонколистового проката, тонкостенных труб и специального профильного проката из металлических и неметаллических материалов.
Каждый из способов имеет свои технически и экономически обоснованные области применения, но для всех способов существует общая технологическая схема расходования технических газов.

При упомянутых выше способах резки нормируются расходные газы, используемые для подогрева металла, собственно резки или плазмообразования. К таким газам относятся: кислород, ацетилен или его заменители (пропан-бутан, природный газ) и азот. Применение водорода и аргона при резке весьма ограничено и в статье не рассматривается.
При плазменно-дуговой резке необходимо планировать расход специальных сменных электродов (катодов) с гафниевыми или циркониевыми вставками. Нормы расхода таких электродов зависят от интенсивности их эксплуатации и составляют 1-4 шт./смену. Для более точного нормирования их расхода необходимо исходить из требований руководства по эксплуатации соответствующего оборудования. В общем случае норма расхода газа на рез или вырезку детали (Рдет) определяется по формуле:

где Н — норматив расхода газа в процессе резки, м3 на 1 м ре-за; L — длина реза (вырезаемого контура), м; Кн — коэффициент, учитывающий расход газов на начальных этапах резки, на подогрев, зажигание плазменной дуги, продувки и регулировки, может быть принят равным 1,1 при единичном производстве и 1,05 — при серийном.

Норматив расхода газа (H, м3 на 1 м реза) в процессе резки в зависимости от характеристик оборудования и режимов резки определяется по формуле:

где Р — номинальный расход газов согласно техническим характеристикам применяемого оборудования, м3/ч; V — скорость резки, м/ч.
Значения номинальных расходов газов в диапазоне скоростей резки для некоторых видов оборудования, которые можно использовать для укрупненных расчетов, приведены в таблице ниже.
Использование того или иного газа обуславливается требованиями технологического процесса и применяемым оборудованием.
Зависимость номинального расхода газа от толщины и скорости резки практически линейная пропорциональная и необходимое значение легко определяется интерполированием.
Таким образом, при необходимости можно укрупненно, оценочно определить расход газов при различных видах термической резки расчетным путем, исходя из используемого вида оборудования, разрезаемого материала и его толщины.

Читайте также:  Как валить деревья бензопилой в нужном направлении

Себестоимость процесса резки металла определяет расход кислорода и пропана, суммируемый с оплатой труда резчика. Причем расход окислителя и топлива зависит от технологии термического разделения металлов.

Поэтому мы начнем нашу статью с описания способов резки.

Технологии резки металлов

На сегодняшний день в промышленности используются три типовых технологии термического разделения металлических заготовок:

  • Кислородная резка.
  • Плазменная резка.
  • Лазерная резка.

Первая технология – кислородная резка – используется при разделении заготовок из углеродистой и низколегированной стали. Кроме того, кислородным резаком можно подравнять края кромок уже отрезанных заготовок, подготовить зону раздела стыка перед сваркой и «подчистить» поверхность литой детали. Расход рабочих газов, в данном случае, определяется тратой и топлива (горючего газа), и окислителя (кислорода).

Вторая технология – плазменная резка – используется при разделении сталей всех типов (от конструкционных до высоколегированных), цветных металлов и их сплавов. Для плазменного резака нет недоступных материалов – он режет даже самые тугоплавкие металлы.

Причем качество разделочного шва, в данном случае, значительно выше, чем у конкурирующей технологии. При определении объемов рабочих газов, в данном случае, важен расход кислорода — при резке металла плазмой за горение материала отвечает именно окислитель. А сама плазма используется, как катализатор процесса термического окисления металла.

Третья технология – лазерная резка – используется для разделения тонколистовых заготовок. Соответственно, объемы расходуемых газов, в данном случае, будут существенно меньше, чем у кислородной и плазменной резки, которые рассчитаны на работу с крупными, толстостенными заготовками.

Нормы расчета горючих газов и окислителя

Нормы расхода пропана и кислорода или ацетилена и кислорода или только окислителя рассчитываются следующим образом:

  • Норматив расхода топлива или окислителя на погонный метр разреза (H) умножается на длину разделочного шва (L).
  • После этого к полученной сумме прибавляют произведение все того же норматива расхода (H) на коэффициент потерь (k), связанных с продувкой и настройкой резака.
Читайте также:  Подключение диодной ленты к 220 через выключатель

В итоге, расход кислорода при сварке (или расход горючего газа) считается по формуле:

Причем коэффициент k принимают равным 1,1 (для мелкосерийного производства или штучной резки, когда требуется часто включать и выключать резак) или 1,05 (для крупносерийного производства, когда резак работает почти без перерывов).

Определение норматива расхода газов

Для точного определения объемов расходуемых газов необходимо определить основу формулы — норму, которой определяется расход газа на погонный метр прорезаемого металла, обозначаемую в формуле литерой «H».

Согласно общим рекомендациям нормированный расход равняется частному от допустимого расхода разделяющего аппарата (p) (кислородного, плазменного или лазерного резака) и скорости резания металла (V).

То есть формула, по которой рассчитывается нормированный расход кислорода на резку металла (Н), а равно и любого другого газа, участвующего в процессе термического разделения, выглядит следующим образом:

Искомый результат подставляют в первую формулу и получают конкретное значение расходуемого объема.

Определение значения допустимого расхода и скорости резания

Используемые во второй формуле операнды p (допустимый расход) и V (скорость резания) зависят от множества факторов.

В частности значение допустимого расхода определяется паспортными данными сварочного аппарата. По сути p равно максимальной пропускной способности форсунки резака в рабочем режиме.

А вот скорость резания – V– определяется исходя из глубины шва, ширины режущей струи окислителя или плазмы, типа разделяемого материала и целой серии косвенных параметров.

В итоге, значение допустимого расхода извлекают из паспорта «резака», а скорость резания находят в справочниках, которые содержат специальные таблицы или диаграммы, связывающие все вводные данные.

И согласно справочным данным допустимый расход кислорода равняется 0,6-25 кубическим метрам в час. А максимальная скорость резания – 5-420 м/час. Причем для лазерной резки характерен минимальный расход (0,6 м3/час) и максимальная скорость (420 м/час): ведь такой резак разделит только 20-миллиметровую заготовку.

А вот плазменный резак «сжигает» до 25 м3/час кислорода и 1,2 м3/час ацетилена. При этом он разделяет даже 30-сантиметровые заготовки, делая разрез на скорости в 5 метров в час.

Словом, в таких расчетах все относительно: чем больше скорость, тем меньше глубина и чем больше расход, тем меньше скорость.

В данной статье приведены средние нормы расхода кислорода для обычных керосинорезов типа резака Бобуха «Вогник». Исходные значение были найдены практическим путем. Использованы средние значения в зависимости от толщины листового металлопроката.

Читайте также:  Чем чистить прессформы работающие по вулканизации стекловолокна

В таблице не указаны значения для листов, толщина металла которых составляет от 1 до 4 мм, так как не практично резать тонкие листы металла, из-за их деформации после резки. О деформации металла при кислородной резке и как её уменьшить можно узнать в этой статье.

Нужно уточнить, что керосинорезом невозможно резать цветные металлы и чугунные изделия, поэтому значения в таблице 1 не подходят для расчетов цветных металлов и чугуна.

Вопрос про расход кислорода является один из самых распространенных и точного ответа Вам никто не сможет дать. Расход зависит от нескольких факторов, а именно:

— качества металла (б/у или новый);

Поэтому в таблице 1 приведены максимально приближенные значения.

Таблица 1.

Расхода кислорода на 1 метр реза керосинорезом.

Толщина металла, мм Расход кислорода, м 3
5 0,146
6 0,189
8 0,216
10 0,262
12 0,309
16 0,405
20 0,52
30 0,74
40 0,985
50 1,23
100 2,44

Расчет керосина в соотношении с кислородом берется 1 к 3. На 10 л керосина необходимо 30 м 3 кислорода.

При работах с резаком обязательно соблюдайте все необходимые нормы и правила безопасности. Используйте всегда исправное оборудование, перед работами обязательно проводите визуальный осмотр оборудования:

Больше информации о технике безопасности и эксплуатации кислородных редукторов можно найти в статье: Эксплуатация кислородного редуктора и техника безопасности.

Информацию о устройстве, хранении и технике безопасности кислородных баллонов читайте в этой статье.

На кислородных баллонах должна быть дата последней проверки, в случае её просрочки нельзя начинать работы. Проверяйте напорные рукава (шланги) на наличие трещин и надежного крепления к редуктору, баллону и резаку.

Газорезчик должен пользоваться защитной спецодеждой, проводить резку в вентилируемых помещениях и обеспечить место резки первичными средствами пожаротушения (огнетушители).

Отправить ответ

  Подписаться  
Уведомление о
Adblock
detector